Mapping the processes of genome editing with high-resolution functional genomics

Britt Adamson

Department of Molecular Biology Lewis-Sigler Institute of Integrative Genomics Princeton University

Genome editing technologies make precision damage to alter DNA sequences

Endogenous DNA repair pathways actually make the edits

A network of DNA repair pathways has evolved to protect cells (not to edit genomes)

Incorporation of sequences from exogenous templates enables genome editing downstream of end resection

Inhibition of competitive branches modulates pathway activity and therefore editing outcomes

Inhibition of competitive branches modulates pathway activity and therefore editing outcomes

Systematic knowledge about the organization of these pathways would aid precision editing efforts

Two CRISPR-based technologies now make systematic interrogation of DNA repair experimentally tractable

1. CRISPR-Cas systems make DNA damage and sequencingbased methods can 'read out' genome edits 2. CRISPR-based screens for interrogation of gene function

Together these technologies can quantify gene effects on single-molecule repair outcomes

Systematic knowledge about the organization of these pathways would aid precision editing efforts

100s to 1,000s of distinguishable repair outcomes

Evaluating editing outcomes as mutational signatures gives a high-resolution view of DNA repair

Depletion of known pathway regulators changes the distribution of edits

Depletion of known pathway regulators changes the distribution of edits

Depletion of known pathway regulators changes the distribution of edits

Correlation between edit signatures delineates the genetic pathways of DNA repair in an unbiased way

Correlation between edit signatures delineates the genetic pathways of DNA repair in an unbiased way

The value of assaying DNA repair pathway activity in a quantitative, unbiased manner

- Has practical implications for genome editing strategies that aim to enrich for particular events (not just alter pathway balance)
- Allows us to isolate mechanisms that cells use to maintain genome integrity and study how they work
- Gives us a powerful way to deduce gene-gene functional relationships and understand how repair mechanisms interact

Acknowledgements

Jeff Hussmann

Jonathan Weissman

Cecilia Anne Cotta-Ramusino Bothmer

Albert Xu

Purnima Ravisankar

Sherry Liu

Jia Ling

Jun Yan

Britt Adamson is a member of a ThinkLab Advisory Board for Celsius Therapeutics.