Dietary Protein 101

Dennis M. Bier, M.D. (Pinch-hitting for Vernon Young who would have given this talk were he still alive)

Disclosure Statement

• I have consulted for, and sometimes received payment

from, several governments, various NGOs, academic societies, disease-oriented associations & wide variety of food and drug companies. I am completely conflicted.

 Besides, I won't mention any commercial products and my only firm stance is "Maybe".

Why Proteins?

(Without Proteins Life Itself Would Be Impossible)

• Essential Functions

- They are the body's structural components
- As enzymes, they catalyze essentially all metabolic reactions
 - Only macronutrient class capable of doing so
- As hormones, they serve as interorgan messengers
- As carrier proteins, they serve as interorgan transporters
- As antibodies, they constitute the adaptive immune system
- Amount present is not related to importance
 - TRH, GHRH, Glucagon, Insulin, et al.
- Absorbed as amino acids or di-/tri-peptides
 - Does enterocyte know if they are of animal, plant or of alternative protein origin?
- There is no storage reservoir for amino acids
 - Unlike carbohydrate and fat
 - Every A.A. has unique function(s); otherwise there would be only one.

No method can measure protein requirements in the free-living state

• Nitrogen Balance

- Biased to the positive
 - Intake is routinely overestimated
 - Losses are invariably underestimated
- Influenced by energy intake
- Days of adaptation required to reach new steady state

• Labelled Nitrogen or Amino Acid Kinetics

- Models are imperfect
 - One can't prove a model, only disprove one.
- Semi-Synthetic Diets; crystalline amino acid mixtures
- Calculated requirements are greater than balance estimates

• Reconciliations are hypotheses, not evidence

The Problem of Non-Protein Nitrogen* (Non-Bioavailability of Milk Urea N[#])

Patient	Sex	Age (day)	Body weight (g)	Dose of di-15N-urea (mg/kg)	As di-15N-urea			
					0-8 hr	0-24 hr	0-48 hr	0-72 hr
1	M	60	5105	17.8	44.4	73.6	80.9	83.1
2	F	87	5690	17.1	37.3	67.0	73.6	75.3
3	М	147	8365	17.0	36.0	65.0	70.4	71.6
4	Μ	153	6605	17.5	46.7	77.0	82.9	84.4
5	Μ	222	7795	17.4	48.7	83.8	91.7	93.9
6	F	267	8135	17.6	51.1	77.1	84.5	86.8
7	F	286	7615	17.3	39.9	70.9	78.6	80.1
8	Μ	286	7555	17.2	50.3	76.6	86.0	88.4
Mean					44,3	73.9	81.1	83.0
SD					5.9	6.1	6.8	7.2

¹⁵N excreted (% of dose)

*Varies widely among foods, 5-10% of total nitrogen is common, but can be as high as 50%

[#]Fomon, Matthews, Bier et al. J. Pediatr. 111:221, 1987

Dietary Protein Requirements Calculated from Obligatory Nitrogen Losses

	Historical (19 th Century)	FAO/WHO/UNU 1981	Rand et al. 2003*	NAS/IOM/FNB 2002
Nitrogen Loss (mg/kg/d)	~100	54	105	
Protein Equivalent EAR		0.34 g/kg/d	0.65 g/kg/d	
Protein Equivalent RDA		0.44 g/kg/d	0.83 g/kg/d	
Protein EAR				0.66
Protein RDA				0.80

*235 subjects studied at three or more levels of dietary protein intake. +2SD for RDI were measured by Rand et al.; not estimated as by FAO/WHO/UNU.

Rand, Pellett & Young. *AJCN* 77:109-127, 2003. FAO/WHO/UNU. *World Health Organ Tech Rep Ser* 724:1–206, 1985.

IS More Better? (Elderly)

Bhasin et al. Effect of protein intake on Lean Body Mass in functionally limited older men *JAMA Intern Med* 178:530-541, 2018.

Is More Better?

(Resistance Exercise)

Lean body mass gain with resistance exercise by daily protein ingestion

Nunes et al. J of Cachexia, Sarcopenia and Muscle 13:795-810. 2022

Is More Better? (End-Stage Renal Disease)

Kovesdy et al. Seminars in Dialysis 23:353-358,2010

Incomplete Proteins and Amino Acid Competition

- Incomplete proteins are abundant
 - Plant proteins are the classical example
- Competition among certain amino acids for absorption from the GI tract surely exists
 - Large body of supporting literature
- These issues are potential considerations:
 - When protein types and overall supply are limited
 - When the host is compromised as in certain inborn errors of metabolism or gastrointestinal disease
 - When excess individual AA are taken as supplements
- In environments where protein availability is abundant, I know of no known issues related to protein amino acid content and/or amino acid competition that have been shown to impair human health.

Plant Amino Acid Digestibility (%)

[Original FAO Estimates Were 70%]

Mung			Sunflower Isolate			
Boans				SUN + Ch	SUN + P	
Dealls		IAA digestibility, %				
		MB- ¹³ C AA	Isoleucine	87.7 ± 5.0	90.7 ± 6.0	
IAA			Leucine	89.9 ± 4.5	92.7 ± 5.2	
			Lysine	86.4 ± 4.3	88.4 ± 4.8	
Methionine	52.2 ± 7.2	48.7 ± 6.3	Methionine	91.1 ± 5.8	95.4 ± 2.6	
Phenylalanine	73.4 ± 6.3	74.6 ± 1.4	Phenylalanine	90.3 ± 4.9	92.6 ± 6.7	
			Threonine	85.8 ± 5.1	89.3 ± 5.5	
Threonine	42.5 ± 1.2	42.7 ± 3.2	Valine	88.3 ± 4.7	91.2 ± 6.1	
Lysine	63.0 ± 5.4	69.3 ± 3.4	Mean IAA	88.5 ± 5.0	91.5 ± 5.4	
			DAA digestibility, %			
Leucine	67.5 ± 3.2	69.3 ± 5.0	Alanine	88.4 ± 4.5	91.0 ± 5.6	
Iso-leucine	75.8 ± 2.6	76.6 ± 5.0	Glycine	68.3 ± 9.5	73.4 ± 10.0	
			Glx	92.2 ± 3.1	94.3 ± 3.8	
Valine	67.8 ± 6.0	66.7 ± 5.1	Proline	81.4 ± 6.4	85.9 ± 6.6	
			Serine	82.1 ± 7.0	81.9 ± 7.1	
Mean IAA	63.2 ± 1.5	64.0 ± 2.4	Mean DAA	82.5 ± 10.6	85.4 ± 9.8	
			Mean, all AAs	85.2 ± 4.7	88.2 ± 5.6	

Bandyopadhyay et al. Adv Nutr 13:1131-1143, 2022 and Tessier et al. J Nutr 152:698-706, 2022

Can one achieve protein adequacy from plant or alternative protein sources?

Confirmed Vegan

Satisfying Requirements with Plant Proteins (A Fundamental Constraint)

Pinckaers et al. Sports Med 51 (Suppl 1) S59-S74, 2021.

Reductionism

- **Confession:** I am a card-carrying reductionist.
- Admission: Reductionism will inform, but will not answer, the questions before us.
 - There are far too many confounding environmental exosome co-variates to control for
 - Propagated methodological noise and other uncertainties are greater than the precision required
- Recommendation: Outcome variables should include both a reliable estimate of LBM and an appropriate measurement of function (remember, water is LBM)

Closing Observation

- Nutrition Study Section 1978 1982
- Study Section members, me included, reviewed grants on the value of alternative protein sources
 - All related to protein availability in the developing world
 - Global sustainability was not a visible issue then
 - Insect protein grants were discussed
- Public adaptation has been slow since then.
- Human behavior is always the rate-limiting step.
- I look forward to the presentations and discussions to come later in this meeting.