NEUROSCIENCE DATA IN THE CLOUD

A WORKSHOP

SEPTEMBER 24, 2019

The National Academies of

ENGINEERING MEDICINE

Session III: FUTURE DIRECTIONS

Session Objective:

• Synthesize key highlights from the workshop discussions, including identifying next steps and promising areas for future action.

Session Overview

MAGALI HAAS, Cohen Veterans Bioscience (Moderator)

Panelists

TED WILLKE, Intel Labs; Portland State University **DOUGLAS LANDSMAN**, National Multiple Sclerosis Society **SILVANA BORGES**, Food and Drug Administration

CVB's Criteria for Selecting a Data Commons

45 Requirements						
Volume	Variety	Velocity	Veracity	Value		
Availability	Durability	Redundancy	Recoverability	Scalability		
Computational Capability (3)	Computational Configurability	Extensibility & Adaptability	Interoperability	Searchability & Retrievability		
Seamless Integration	Accessibility	Usability	Import-Export	Storing Capability		
Affordability	Migratability	Workflow Controllability	Support Capability	Environment Longevity		
Retainability	Sustainability	Data Reproducibility	Organizational Survivability	Protectability		
Privacy	Cyber Security	Shareability	Transparency	Reproducibility		
Compatibility	Global Compliance	Accounting and Auditability	Flexibility & Elasticity	Analytics Visualization		
Domain Focus	Open Source	Geographic Diversity				

10 Areas of Platform Requirements

Data Volume No. 1 • Petabyte Scale • (FAIR) • Data Driven Discovery	Data Variety No. 2 • Unstructured • Heterogeneous No Constraints on Raw Data Type	Data Velocity No. 3 • High Throughput Approaches Data flows - streaming, ingest - processing	Data Veracity No. 4 • Complex Analytics Best in class analytics and bioinformatics tools, workflows, pipelines	Data Value No. 5 • Globally - Cloud Durability, redundancy, survivability, longevity, platform sustainability, recoverability, reproducibility
Computation No. 6 • Workflows, Pipelines Finding, computing style, configurability, complex analytics, locality of reference. "One size does not fit all."	Interoperability No. 7 • Heterogeneous Data Seamless , APIs, restful services, global , concurrency, standards, open source.	Privacy & Security No. 8 • Global Compliance • Governance - auditability HIPPA HITECH, EU-GDPR, FISMA, NIST, NIH-BD2K, FAIR, GA4GH, VA, DOD, FDA, BIDS, FEdRAMP, etc.	Scalability No. 9 • Performance execution Linear, network computation	Sustainability No. 10 • Reusability Retainability, protectability, survivability, funded, affordable

Confidential-- All Rights Reserved

Compared 105+ Available Platforms

Platforms and Software Technologies #1. NCI Genomic Data #2. tranSMART Knowledge #3. Informatics for Integrating #4. Ontario Brain **#5. EU EPILEPSIAE** Biology and the Bedside (i2b2) Commons (GDC) Management Platform Institute (Brain-CODE) Database #8. NIMH Data Archive -#10. HPI Hasso #9. MIT "SuperCloud" #6. IEEG.org – International #7. NSF Cloud Platforms -National Institute of Mental Pattner Institute -Epilepsy Electrophysiology Computing in the Cloud Univ of Potsdam Health #13. PMI (Precision Medicine #14. The Open Cloud #15. CG HUB from #11. EMC – Pivotal - Large Initiative) #12. Perkin Elmer – "Signals" Consortium – Open The Cancer Genome Scale Hadoop Testbed New York Genome Center + Science Data Cloud Atlas (TCGA) IBM #19. IBM Watson #20. MVP - Million #18. "Genome Bridge" – The #16. Cancer Genome #17. Blackflynn Health & IBM Watson Veterans Program Collaboratory - (Canada) Broad Health Cloud (GenISIS) #21. Intel PCCSB - Intel #23. LONI Laboratory of Neuro #22. Collaborative Cancer Cloud -#24. European Open #25. ICGC Parallel Computing Center Imaging - IDA Image and Data Science Cloud Intel Data Portal Structural Biology Archive (USC) #26. LORIS #29. NCBI National #27. Frederick National Longitudinal Online #28. DNAnexus #30. GENISIS Project Center for Laboratory FFRDC Research & Imaging System Cloud Based Platform - Cloud Based Biotechnology SysBioCube Information (Canada) #35. BC Platforms -#31. cBio Cancer Genomics #34. BioStorage #32. Sage Bionetworks - Synapse #33. Palantir Portal Technologies Federated DB #36. DART – American #40. Ensembl Project #37. Sentinel #38. XNAT #39. BioMart College of Radiology #44. Shanoir Data #41. REDCap #43. NeuroVault #45. COINS #42. INCF Management #50. NIDB Neuro #46. NITR #47. Vivli #48. Google #49. Facebook informatics Database

Bioscience

ACTION PLAN:

Working Groups Proposed: Informed Consent Templates Governance – Consensus Principles for Data Policy, Privacy, Access, Use, Disclosure Common Data Model framework and methods for transformation across versions Incentive models for a variety of stakeholders Training, training, training.

Policy & Advocacy Proposed: Legislation that addresses re-identification

- Sustainability Models infrastructure and funding:
 For data, platforms, software
 Frameworks for types of data to be maintained/future proofing

Best Practices:

- Code-sharing with protections
 Reporting of Incidental findings
 Storage practices (e.g. containerization, cloud vs local)

Approaches into tapping into existing initiatives:
Catalog of Platforms, Data, Pipelines
Coordinating Bodies (e.g. NIH, INCF)

