the logic of exclusions

“If our motorboat engines were as erratic as our deliberate intellectual
efforts, most of us would not get home for supper.”

Michael J Keiser, PhD
Assistant Professor, UCSF

keiser@keiserlab.org

Bakar Computational Health Sciences Institute
Kavli Institute for Fundamental Neuroscience
Institute for Neurodegenerative Diseases

- Platt, Science, 1964

UCsr

2019-09 NASEM Workshop

Enhancing Scientific Reproducibility
through Transparent Reporting



16 October 1964, Volume 146, Number 3642

Strong

Inference

Certain systematic methods of scientific thinking
may produce much more rapid progress than others.

Scientists these days tend to keep
up a polite fiction that all science is
equal. Except for the work of the mis-
guided opponent whose arguments we
happen to be refuting at the time, we
speak as though every scientist’s field
and methods of study are as good as
every other scientist’s, and perhaps a
little better. This keeps us all cordial
when it comes to recommending each
other for government grants.

But I think anyone who looks at
the matter closelv will aeree that some

John R. Platt

in scientific advance is an intellectual
one. These rapidly moving fields are
fields where a particular method of
doing scientific research is systemati-
cally used and taught, an accumulative
method of inductive inference that is
so effective that I think it should be
given the name of “strong inference.”
I believe it is important to examine
this method, its use and history and
rationale, and to see whether other
groups and individuals might learn to
adont it nrafitahlv in their awn <cien-

SCIENCE

“nature” or the experimental outcome
chooses—to go to the right branch or
the left; at the next fork, to go left
or right; and so on. There are similar
branch points in a “conditional com-
puter program,” where the next move
depends on the result of the last cal-
culation. And there is a “conditional
inductive tree” or “logical tree” of this
kind written out in detail in many
first-year chemistry books, in the table
of steps for qualitative analysis of an
unknown sample, where the student
is led through a real problem of con-
secutive inference: Add reagent A; if
you get a red precipitate, it is sub-
group alpha and you filter and add
reagent B; if not, you add the other
reagent, B'; and so on.

On any new problem, of course,
inductive inference is not as simple
and certain as deduction, because it
involves reaching out into the un-
known. Steps 1 and 2 require in-
tellectual inventions, which must be
cleverly chosen so that hypothesis, ex-
periment, outcome, and exclusion will
be related in a rigorous syllogism; and
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strong inference follows a systematic &
transparent recipe

Hypothesis 1 1) Devising hypotheses
Experiment Methods L. . .
- e 2) Devising crucial experiment(s),
' |

e with alternative possible outcomes,
each of which will, as nearly as

possible,
Yes: Hypothesis 1
is wrong. * exclude one or more of the
hypotheses

e 3) Carrying out the experiment so
as to get a clean result

e 1') Recycling the procedure, making
* sub-hypotheses or

* sequential hypotheses to refine the
possibilities that remain; and so on.

Platt, Science, 1964 keiser lab @ U(‘SF



which measurements are effective?

 Errors of reasoning:
e We substitute correlations

for causal studies. elegant
* Numbers become the goal fine-grained
instead of the crucial but flimsy
experiment.
coarse
qualitative
strong

Measurements are
useful when & only
when they are

“ _ related to disproof.
Many—perhaps most—of the great issues of

science are qualitative, not quantitative.”

Platt, Science, 1964 keiser lab @ UCSF



A model which cannot be mortally
endangered cannot be alive.

meets machine learning
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Adversarial Controls for
Scientific Machine Learning

ACS Chem Biol. 2018 Oct 19. Chuang KV, Keiser MJ.

| -

Community ofseces

1. Opening the Black Box
Does the model make scientific sense?

Platt’s logical box 1964

2. The Method of Multiple Models
Is a confounding variable driving the prediction?

Chamberlin 1897, Bacon 1620 Sl
Machine
3. Outperforming the Straw Model Learning

Does it break when you remove what matters?

ACSPublications —

Langley’s straw man 1988 =
Popper 1963

* Langley, P. (1988) Machine Learning as an Experimental Science. Mach. Learn. 3 (1), 5-8.
* Science as Falsification (Popper, Conjectures and Refutations, 1963)
* The method of multiple hypotheses (Chamberlin, 1897) keiser lab @ UCSF



http://www.stephenjaygould.org/ctrl/popper_falsification.html

Interpretable classification of Alzheimer's disease
pathologies with a convolutional neural network pipeline

Nat Commun. 2019 May 15. Tang Z, et al.

Diffuse Cored

o . https://doi.org/10.1101/454793
b l O RX lV m https://github.com/keiserlab/plaqguebox-paper

THE PREPRINT SERVER FOR BIOLOGY https//dOIOrg/105281/zenodo1470797

keiser lab @ ||(‘SF
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https://github.com/keiserlab/plaquebox-paper
https://github.com/keiserlab/plaquebox-paper
https://doi.org/10.5281/zenodo.1470797
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performance in C-N cross-coupling °

using machine learning o edhaahy dependent g rom he pubbeoer of since Tanciets
Medicine. All content is Derek’s own, and he does not in any way speak for his ¥Im| R

Science. 2018 Nov 16. Chuang KV, Keiser MJ. employer. e

in

CHEMICAL NEWS

Machine Learning: Be Careful What You Ask For

By Derek Lowe | 20 November, 2018

Science. 13 Apr 2018. Ahneman et al.

Prediction of chemical reaction yields
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Using random barcodes instead of chemical features

https://github.com/keiserlab/comments
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https://github.com/keiserlab/comments

how should we choose scientific reporting standards?

e Transparent reporting shows
a chain of precise
induction of how
nature works.

¢ .

e This is the sole
yardstick of their L L
effectiveness.

keiser lab @ U(‘SF



we can share the chain itself

I recorded several metrics. In order to simplify analysis, | will only review one metric in this .

notebook. | cheose AUG on the validation set, because this is the metric most used in papers an by R t d t
the lab [because of the ranking aspect of the problem, and the imbalanced datasets). e I S e re re O r S
However, let's have a look at the corelation between the different metrics. Below, the correlations. °

are plotted and colored for the different datasets (assay_ids). The diagonal displays a stacked httpS://OSf.iO/rr/
histogram,

Tha metrics ara:

*  AUC: Area under curve

. :‘][:s'sr;o;‘r:;?nua%nmn?mc witouth ranking {possible in sk_learn, although it seems 1o be Ve rs i o n Co nt ro I (g it) & d ata (Ze n Od O)

+ AP Average Precision

" 200uEmny; Proporion comest o e etse deteee * https://github.com & https://zenodo.org
In [2]): |9 ans.PairGrid{all_results_df, vars=['valid auc norank', 'valid aue',
‘valid ap', ‘valid accuracy’], hue="assay id")
3 :;a:__:iig P:;: p?t ?:éatter ) . .
e * Show logic in Jupyter notebook/lab

e http://jupyter.org

Save the environment (conda)
e https://github.com/conda/conda

Use makefiles &/or workflow tools

e http://kbroman.org/minimal make
e https://github.com/pditommaso/awesome-pipeline

10 Rules for Reproducible Research

* PLoS Comp Biol 2013
e http://bit.ly/2bhhSQx

The first clear cbservation is that auc_norank has an artifact where many results are evaluated as

keiser lab @ UCSF


https://osf.io/rr/
https://github.com/
https://zenodo.org/
http://jupyter.org/
https://github.com/conda/conda
http://kbroman.org/minimal_make/
https://github.com/pditommaso/awesome-pipeline
http://bit.ly/2bhhSQx

one proposal-

scientific (ai) red team

& regular in-lab code review

keiser lab @ | l( ‘SF
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