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Conceptual Pathway to Panel Response
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Conceptual Pathway to Panel Response
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Auxiliary Data Sources

• Auxiliary data used to identify and correct both types of bias

• Non-Response
• Administrative data

• Frame data

• Paradata

• Commercial data

• Previous wave(s) survey data

• Linkage Non-Consent
• Same as non-response, and current-wave survey data
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Magnitude of Non-Response 
and Linkage Non-Consent Bias

Two Examples
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Sakshaug and Kreuter (2012)

Characteristics Non-Response Bias Non-Consent Bias Measurement Bias

Age (years) 0.1 -0.3* -0.0

Foreign (%) -5.6* -0.9* -2.5*

Unemployment benefit (%) 3.2* -0.3 -7.5*

Disability (%) 0.4 0.0 6.1*

Employment status (%) 1.0 0.3 -1.0

Monthly income (EUR) -71.4* 1.7 402.4*

* p < 0.05

Non-response bias larger than linkage non-consent bias
- Measurement bias (mostly) larger than both 

CATI/CAPI cross-sectional survey of welfare benefit recipients in Germany
- Administrative records available for drawn sample
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Sakshaug and Huber (2016)

CATI panel survey of employees in Germany
- Administrative data available for drawn sample
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Adjusting for Panel 
Non-Response Bias

Using Previous Wave(s) Survey Data
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Silverwood et al. (2020)

• Data-driven multiple imputation (MI) approach for non-response bias adjustment

• Applied to UCL Next Steps Cohort Study

• Aim: Adjust for cumulative non-response bias in Wave 8 (Age 25) by using survey data from Waves 1-7

• Approach capitalizes on rich survey data collected in earlier waves

• 868 eligible predictor variables

• Method: Multiply impute NR in Waves 1-7, apply variable selection to identify predictors of Wave 8 NR, and 
use retained predictors to multiply impute Wave 8 outcomes
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Data Driven Approach for Non-Response Bias Adjustment
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Silverwood et al. (2020)

Wave 1 Rs Wave 8 Rs NR bias

Characteristics
Complete 

case analysis
MI 

approach
Before 

MI
After 

MI

Male (%) 51.5 45.0 46.6 -6.5 -4.9

Non-white British (%) 14.1 12.8 14.3 -1.3 0.2

Single parent HH (%) 23.5 19.5 23.3 4.0 -0.2

Ever suspended (%) 11.1 7.3 10.5 -3.8 -0.6

Attend university (%) 36.9* 44.5 38.2 7.6 1.3

Income (GBP) 33,022 34,756 32,673 1734 -349

* External benchmark (estimated) 
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Adjusting for Panel 
Non-Response Bias

Using Linked Administrative Data in a Piggyback Longitudinal Survey
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Piggyback Longitudinal Surveys

• Several longitudinal studies recruit respondents from independent cross-sectional surveys

• US National Health Interview Survey → US Medical Expenditure Panel Survey-Household Component

• Health Surveys for England → English Longitudinal Study of Ageing

• German General Social Survey → GESIS Panel

• Some of these cross-sectional surveys perform administrative data linkages (given respondent consent)

• Idea: Use existing linkages from cross-sectional survey to measure and adjust for NR bias in piggyback 
longitudinal survey

• Challenge: Not all cross-sectional respondents are “panel willing” or consent to linkage
• Further adjustments for multiple sources of selection
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Büttner, Sakshaug, and Vicari (forthcoming)

• Cross-sectional survey: “Working and Learning in a Changing World” (ALWA)

• Linked administrative data: “Integrated Employment Biographies”

ALWA field 
sample

22,656

Non-response

Response

10,404

Born in 1987/88

Born in 1956-
1986

9,649

Russian/ 
Turkish CATI

CATI in 
German

9,422

No consent

Consent to 
linkage to 
admin data

8,635

No linkage

Successs-ful 
linkage

7,460

No panel 
willingness

Panel willing

7,085
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Büttner, Sakshaug, and Vicari (forthcoming)

• Piggyback longitudinal survey: “National Educational Panel Study” (NEPS)

17



Absolute Attrition Bias by Wave and Weighting Scheme

• Linked administrative variables significant 
predictors in multiple waves’ response models

• Current- and between-wave information
associated with attrition

• Incorporating linked admin data in weighting 
adjustment reduces NR bias for some variables
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Reducing (the Risk of) 
Linkage Non-Consent Bias

Survey Design Strategies
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Linkage Non-Consent Bias

• Some statistical adjustment methods for non-consent/linkage bias
• Weighting (Yang, Fricker, and Eltinge 2019)

• Imputation (Zhang, Parker, and Schenker 2016)

• Statistical matching (Gessendorfer et al. 2018)

• Other approaches try to maximize consent rates at the design stage
• Placement of consent Q in questionnaire

• E.g. Beginning, middle, end 

• Framing of consent Q
• E.g. Gain framing / loss framing
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Consent Placement Studies

• Sakshaug and Vicari (2018) – Web survey of establishments
• Beginning: 61.3%

• Middle: 52.3%

• End: 45.2%

• Sala, Knies, and Burton (2014) – CAPI survey of households
• “In context”: 65%

• End: 58%

• Sakshaug, Tutz, and Kreuter (2013) – CATI survey of employed/unemployed persons
• Beginning: 95.6%

• End: 86.0%
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Consent Framing Studies

Gain/benefit framing: “To keep the interview as short as possible...”

• Sakshaug et al. (2019) – CATI employee survey
• Gain vs. neutral: no effect overall; 4-10 percentage points higher for “busy” respondents

• Sakshaug, Tutz, and Kreuter (2013) – CATI survey of employed/unemployed persons
• Gain vs. neutral: no effect

• Sakshaug and Kreuter (2014) – Web survey of employed/unemployed persons
• Gain:       61.6%

• Neutral:  55.4%

Loss framing: “The answers you provided will be less useful if we cannot link…”

• Kreuter, Sakshaug, and Tourangeau (2016) – CATI survey of US registered voters
• Gain:    56.1%

• Loss:    66.8%
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Interaction between Placement and Framing

Telephone survey Gain Loss Total

Placement
Beginning
End

91.7
72.3

87.1
74.6

89.1
73.6

Total 82.9 80.9 81.8

Web survey Gain Loss Total

Placement
Beginning
End

80.5
65.6

85.9
76.6

83.1
71.5

Total 73.4 81.0 77.3

Positive effect of placement (“beginning”) in both surveys
- Irrespective of framing
- Difference between 12-16 %-points

In Web survey, interaction between framing and placement
- Loss framing increases consent, but only at “end” of iw

Sakshaug et al. (2019)
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Conclusions

• Linkage consent biases exist, but are small relative to non-response biases

• Using rich survey and/or linked-administrative data useful for measuring/adjusting for panel non-
response bias

• Linkage consent rates improved by asking consent question at the beginning of questionnaire (as 
opposed to end placement)

• Consent question framing effects are less consistent, except in Web surveys
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Thank you

Questions? Comments? Collaborations?

Contact: joe.sakshaug@iab.de
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