

Status of the SFR technology developments in the Generation-IV International Forum: Reactor Design & Fuel R&D

Gilles RODRIGUEZFrédéric SERREGIF Technical DirectorGIF/SFR System Steering Committee ChairCEA – French Alternative Energies and Atomic Energy Commission

SFR : one of the six Gen-IV Nuclear Reactor Systems

Sodium Fast Reactors Operational data (2021)				
Reactor (Country)	Thermal Power	First Criticality	Final Shutdown	Operational period (years)
BR-I (USA)	1,4	1951	1963	12
R-5/BR-10 (Russia)	8	1958	2002	44
PFR (UK)	60	1959	1977	18
BR-II (USA)	62,5	1961	1991	30
FFBR (USA)	200	1963	1972	9
apsodie (France)	40	1967	1983	16
OR-60 (Russia)	55	1968		53
EFOR (USA)	20	1969	1972	3
N-350 (Kazakhstan)	750	1972	1999	27
henix (France)	563	1973	2009	36
PFR (UK)	650	1974	1994	20
OYO (Japan)	50-75/100	1977		44
NK-II (Germany)	58	1977	1991	14
FTF (USA)	400	1980	1993	13
N-600 (Russia)	1470	1980		41
SuperPhenix (France)	3000	1985	1997	12
BTR (India)	40	1985		36
10NJU (Japan)	714	1994	2016	22
N-800 (Russia)	2000	2014		7
EFR (China)	65	2010		11
FBR (India)	1250	Under commissioning		
otal all fast reactors				468

*ISI&R: In-Service **Inspection & Repair**

**: See focus from F. SERRE

+ Guaranty the supply chain and preserve the sodium technology knowledge and know-how (liquid metal handling & good practices)

Highlights related to SFR: R&D in GENIV

• One of the most active GIF system (together with VHTR) with four R&D Projects running:

- System Integration and Assessment (SIA)
- Safety and Operations (S&O)
- o Advanced Fuel (AF)
- Component Design and Balance of Plant (CD&BOP)
- Five SFR Design Concepts:
 - Loop Option (JSFR Design Track)
 - o Pool Option (KALIMER-600, ESFR, and BN1200 Design Tracks)
 - Small Modular Option (SMFR-ANL Design Track)
- Revision of SFR System Research Plan was completed and approved by System Steering Committee in October 2019

Significant joint milestones

- Joint paper on SFR Safety Design Criteria (SDC) Safety Design Guidelines (SDG)
- White Paper on the SFR PRPP aspects has been finalised and soon published

See main R&D progress in the 2020 Annual report / Chap 4 https://www.gen-4.org/gif/jcms/c 178286/gif-2020-annual-report

www.gen-4.org

GEN

Chapter 4. System reports

ANNUAL

REPORT

2020

Some main highlights related to SFR: projects around the World

- China: Construction of two pilot SFR units (CFR-600) is ongoing in China
- Europe: Euratom collaborative project ESFR-SMART focuses on enhancing the safety of Generation-IV SFRs => Continuation foreseen with the New EURATOM Call

CFR-600 Fuel fabrication site (TVEL) Source TVEL website

Construction site of CFR-600 – source WNN

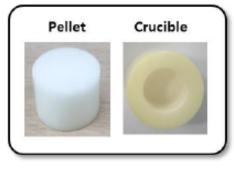
6

- Russia: MBIR Project
- USA: NATRIUM (TERRAPOWER) & VTR reactors under project

Highlights on Advanced Fuel Project Outcomes

A Long Lasting GIF cooperation on the SFR Advanced Fuel Issues

- First Advanced Project Arrangement signed for 10 years on March 2007
- New Advanced Project Arrangement signed for 10 years on April 2018
- Amendment to be signed soon:
 - For UK new membership,
 - With Project Plan Update (including Partners commitments)


Top Advanced Fuel Project Objectives:

- Selection of high burn-up Minor Actinide bearing fuel(s)
- Selection of cladding and wrapper withstanding high neutron doses and temperatures
 - Candidates:
 - Non Minor-Actinide Driver fuels (Oxide, Metal, Nitride & Carbide)
 - o Inert Matrix Fuels & Minor Actinide Bearing Blankets
 - o Core materials:

Ferritic/Martensitic & Oxide Dispersed Strengthened (ODS) steels

– Scopes

- Fabrication
- o Behavior under irradiation

RoK: Reusable crucible development for metallic fuel casting process

RF: High-Voltage Compaction Method for production of Fuel Pellet (Lab-Scale)

Main Outcomes of the Advanced Fuel Project phase 1 (2007-2017) (1)

2009: Report on 'Advanced Sodium Fast Reactor (SFR) Fuel Comparison'

2015: Revision 1 of the report 'Advanced Sodium Fast Reactor (SFR) Fuel Comparison'

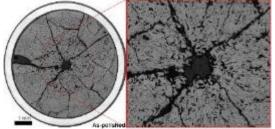
- The internal GIF report includes:
 - the choice and direction of researches, development and qualification
 - Knowledge on fuel under study and development
 - o Oxide, metal, nitride, and carbide fuels
- Main Goals (and challenges) for development of transmutation in SFRs:
 - To achieve high burn-up
 - For Operation at high temperature
 - With incorporation of Minor Actinides
- Main Physical limitations to meet these goals:
 - Fuel swelling
 - Cladding inner oxidation
 - Dimension stability of core materials (mainly due to dose rate)

9

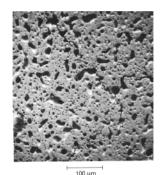
Main Outcomes of the Advanced Fuel Project phase 1 (2007-2017) (2) Fuel Type Recommendations (1)

2015: Report 'Advanced Sodium Fast Reactor (SFR) Fuel Type Recommendation' including revision 1 of 'Advanced Sodium Fast Reactor (SFR) Fuel Comparison'

- Gives recommendations regarding preferred driver fuels and transmutation fuel types:
 - Confirms the Advanced Fuel Comparison report dated 2009
 - Fuel type selection, for each country, is dependent upon multiple domestic factors:
 - o Country experiences
 - o Infrastructures
 - o Domestics policies


China: CEFR – A platform for R&D International Cooperation on Fast Reactors

Main Outcomes of the Advanced Fuel Project phase 1 (2007-2017) Fuel Type Recommendations (2)


2015: Report 'Advanced Sodium Fast Reactor (SFR) Fuel Type Recommendation' Main Conclusions on Fuel R&D and readiness (1)

- Oxide Fuel
 - Highest technical readiness level; Demonstration of adequate performances:
 - o For high burn-up for fuel at assembly level
 - o For transmutation fuel at the fuel pin level
- Metallic Fuel
 - Substantial experience demonstrated at the assembly level
 - Issues identified regarding high-burn-up and transmutation have technical solutions that are being assessed via in-pile testing

5%Am-MOX. O/M:1.98
Core center elevation

Japan: Photomicrograph of 5% Am MOX fuel from the AM 1 10 minute irradiation in Joyo

Main Outcomes of the Advanced Fuel Project phase 1 (2007-2017) Fuel Type Recommendations (3)

2015: Report 'Advanced Sodium Fast Reactor (SFR) Fuel Type Recommendation' Main Conclusions on Fuel R&D and readiness (2)

• Nitride/Carbide Fuel:

- fairly extensive and adequate performance demonstrated at the pin, sub-assembly and assembly (nitride) level for driver fuel
 - High burn-up and transmutation; no critical issues identified; technologies in early stage of assessment

• Target Fuel system dedicated to transmutation

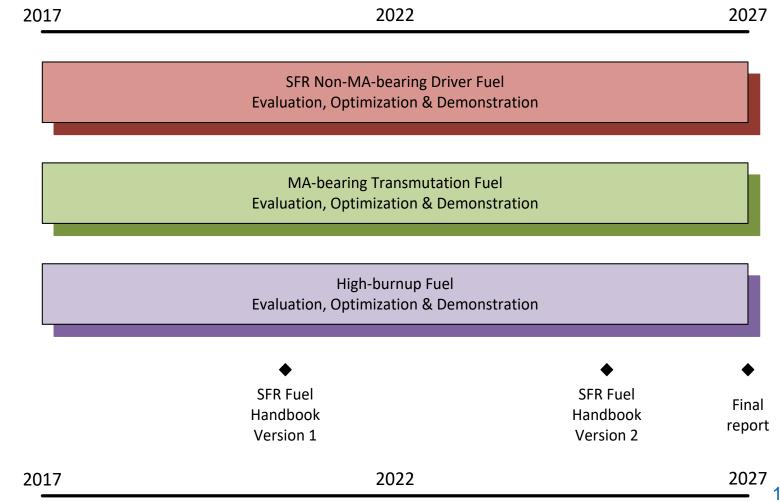
- Early stage of development and assessment
- Potential issues that have been identified being assessed via in-pile testing

Main Outcome of the Advanced Fuel Project phase 1 (2007-2017) Fuel Type Recommendations (4)

2015: Report 'Advanced Sodium Fast Reactor (SFR) Fuel Type Recommendation' Main Conclusions on Fuel and Clad/Wrapper Material Selections

• Fuel Selection:

- China, France, Japan and Euratom selected oxide fuel, at least for initial SFR start-up
- US and Republic of Korea are working to start-up with metal fuel
- Russia has selected nitride fuel for BN-1200
- Clad/Wrapper selection: Partners' recommendations
 - Start with ferritic/martensitic clad/wrappers
 - In a longer time, switch to other advanced alloys such as oxide dispersed strengthened steels



Advanced Fuel Project Plan (2017-2027)

Continuation of 2007-2017 Project Plan with

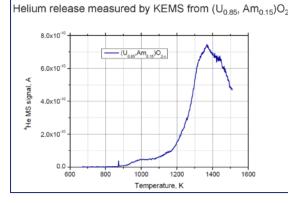
additional evaluation, optimization and demonstration of selected fuel candidates

- Advanced Fuel development efforts on three research items (see figure)
 - Investigation of specific knowledge gaps on oxide and metal fuel (highest technical readiness level)
 - Continuation of evaluation of nitride, carbide and inert matrix as medium and long term options

 AF Project Output: SFR Fuel Handbook

> Current state of science and technology

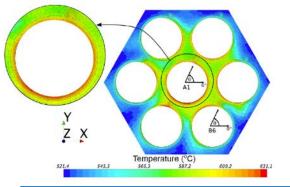
Examples of 2020 outcomes from the GIF SFR Advanced Fuel Project


Given in the GIF Annual Report 2020

• WP2.1: SFR non-MA-bearing driver fuel evaluation, optimization and demonstration

- CIAE: For irradiation tests, fabrication of dummy assemblies and out-of-pile hydraulics tests
- CEA: Characterization of the PAVIX-8 axially heterogeneous pins irradiated at intermediate Linear Heat Rate in PHENIX and assessment of GERMINAL V2 code against the experimental results
- JAEA: Technology development (nanoparticle coating) for minimizing fuel retention in glove box
- WP2.2: MA-bearing transmutation fuel evaluation, optimization and demonstration
 - Euratom: Investigation of He release mechanisms from (U,Am)O₂
 - JAEA: Development and evaluation of simplified pelletizing process for MA-bearing MOX
 - KAERI: Analyses of interaction Casting/U-10%Zr with Rare-Earth; Alternative crucibles and mould demonstrated using a casting of the U-Zr-Rare-Earth alloy
 - Rosatom: Developments of manufacturing process for Am-burning element (heterogeneous scenario)
- WP2.3: High-burn-up fuel evaluation, optimization and demonstration
 - CIAE: preparation of CN-1515 and CN-FMS material irradiation tests in the CEFR (Fabrication of claddings done)
 - CEA: Characterization of irradiated cladding tubes of 15-15Ti AIM1 from two different fabrication routes (GDMS, tensile tests)
 - JAEA: high- and ultra-high-temperature creep rupture tests of 9Cr-ODS steel clads and comparison with 11Cr-ferritic/martensitic steel clads
 - KAERI: technology development to suppress fuel-clad chemical interaction for the use of MA-bearing metal fuel (Cr plating)
 - Rosatom: Development and manufacturing of BN-600 irradiation assemblies

2020: Synthesis on GIF SFR Advanced Fuel R&D (for Oxide, Metal and Nitride Fuels)


GIF Contribution to OECD/NEA/WGSAR report on Fuel Qualification of Advanced Reactors To be presented and issued in proceedings of Fast Reactor *

- **Introduction:** Advantages of each fuel candidates
- Typical Fuel element description
- Role in Safety Cases
- Challenges for Fuel Qualification
- **Conclusions:** •

ernational

- Acquisition of fuel performance is the most common and effective method to qualify the integrity of fuel pins and fuel subassemblies
- A variety of irradiation experiments for SFR oxide, metal and nitride fuels were identified
- Today, Fast Spectrum irradiation capabilities are very limited internationally —
- Fuel testing campaigns can require a great deal of time and expense
- \Rightarrow Advanced fuel modeling techniques simulating the fuel irradiation behavior will play a significant role in future fuel qualification
 - With the main challenge validating the predictability of complex fuel performance phenomena • identified for each type of fuel

*REFERENCE FUEL OPTIONS FOR GENERATION-IV SODIUM-COOLED FAST REACTORS, F. SERRE¹, N. CHAUVIN¹, M. PELLETIER¹, P. GAUTHE¹, R. N. HILL², T. SOFU², T. E. SOWINSKI³, S. OKAJIMA⁴, K. ISHII⁴, S. KUBO⁴, S. MAEDA⁴, J-W YOO⁵, J CHANG⁵, J CHEON⁵, I. PAKHOMOV⁶, L. ZABUDKO⁷, N. J. BARRON⁸, H. TSIGE TAMIRAT⁹, L. REN¹⁰ ¹CEA (FR), ²ANL, (US) ³DOE (US), ⁴JAEA (JP), ⁵KAERI (ROK), ⁶,SSCRF (RF), ⁷JSC PRORYV (RF), ⁸NNL (UK), ⁹,EURATOM (EU), ¹⁰CIAE (China)

France: Simulation of 3-D pin deformation with thermomecanical (Domajeur2) and Thermohydraulics (STAR-CCM+) coupled codes

Some general conclusions on SFR design and Fuel R&D

- A huge amount of knowledge has been accumulated and on SFRs, coming from several decades of operation and studies,
- Liquid sodium is a mastered coolant but its handling requires a specific know-how
- Preservation of knowledge and training of new generation are key issues
- SFR technology, which is quite mature, has a big potentiality to meet future needs of energy production and sustainability in case of rapid nuclear sector expansion
- In preparation of its deployment, following issues require further R&D : Passive safety systems, Severe accident countermeasures, CAPEX reduction, Flexibility, Lifetime extension and Fuel performance

 As other SFR projects, AF Project allows the GIF partners to share R&D national progresses, to discuss/benchmark the results for further R&D orientation, and to gather the state of the art in joint documents

