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Background

• Increasingly available transaction level data (e.g. supermarket 

scanner data) provides huge opportunities for national statistical 

offices. 

• CPI construction can move to theoretically preferred methods that 

use more information:

– Actual transaction prices, rather than shelf prices

– Information on quantities purchased at those prices 

• Can also help with more timely production of the CPI (more 

automation)

• More accurate and timely information can help better inform policy

• Big advantages from using such Big Data, but can be problems: 

• High frequency data can be very volatile

• Standard bilateral index number theory can break down



Volatility in Prices and Quantities Sold



Chain Drift Bias
Ivancic, Diewert and Fox (2011), J. of Econometrics



Background

• Ivancic, Diewert and Fox (2009)(2011) proposed using 

multilateral index numbers with transaction level data in 

order to avoid chain drift bias. 

• Came out of collaborations with the ABS, supported by the 

Australian Research Council

• Multilateral indexes were developed for use in cross-country 

comparisons (e.g. ICP, Penn World Table). 

• Multilateral methods now used in the CPIs of Australia, the 

Netherlands, Belgium and New Zealand. Many countries are 

experimenting.



Background

“The international price statistics community has reached a 

consensus that multilateral methods are the most effective way

to exploit the full amount of information provided in 

transactions datasets.”

David Kalisch, The Australian Statistician (Head of ABS)

Preface to “An implementation plan to maximise the use of transactions data in the 

CPI,” Information Paper 6401.0.60.004, Australian Bureau of Statistics, Canberra. 



Our paper

1. The best multilateral method to use?

2. The best way of extending the resulting series when new 

observations become available?

• Present theoretical and simulation evidence on the extent of 

substitution biases from using alternative multilateral methods.

• Examine GEKS, CCDI, Geary-Khamis, Weighted Time Product 

Dummy multilateral methods.

• Examine alternative extension methods: movement splice, full 

window splice, half splice, similarity linking.

• Also propose a new method, the “mean splice”.

• Results suggest the use of the CCDI (GEKS-Törnquist) multilateral 

index used in combination with the mean splice.



The Chain Drift Problem

Circularity Test: P(p0,p1,q0,q1) P(p1,p2,q1,q2) = P(p0,p2,q0,q2).

Multilateral indexes (for e.g. comparisons across countries) satisfy 

this test, but standard bilateral indexes do not.

Consider this related test:

Multiperiod Identity Test:  P(p0,p1,q0,q1)P(p1,p2,q1,q2)P(p2,p0,q2,q0)  = 1

That is, if the prices in the third period revert back to period 0 prices, 

the product of all price changes should equal unity.

Chain drift occurs when an index does not return to unity when prices 

in the current period return to their levels in the base period.



The Chain Drift Problem

There are at least three possible solutions:

1. Stick to the usual Lowe index that uses annual expenditure 

weights from a past year → substitution bias.

2. Pick a base month and use fixed base superlative indexes relative 

to the chosen month → too much weight to the chosen base. Also, 

new and disappearing goods problem.

3. Use a Rolling Window multilateral index number approach adapted 

to the time series context, as suggested by IDF. 

Focus on solution 3. 



Multilateral Methods: GEKS

• Method for making international index number comparisons 

between countries (Gini 1931).

• Suppose we have price and quantity information for a component of 

the CPI on a monthly basis for a sequence of 13 consecutive 

months. 

• Pick one month (say k) in this augmented year as the base, 

construct Fisher price indexes for all 13 months relative to this base 

month. 

• Denote the resulting sequence of Fisher indexes as PF(1/k), PF(2/k), 

..., PF(13/k). 

• The final set of GEKS indexes for the 13 months is the geometric 

mean of all 13 of the specific month indexes.



Multilateral Methods: CCDI

• Caves, Christensen and Diewert (1982, EJ), Inklaar and Diewert 

(2016, J. Econometrics)

• Same idea as GEKS, but replaces the Fisher bilateral index in GEKS 

with the Törnqvist bilateral index.

• Turns out to have a nice interpretation. 

o Same as if the period t prices are compared to any base 

period’s prices through an artificial “average” period.  

• The algebra for this alternative form of the index is much simpler 

and can be analyzed more simply. 



Multilateral Methods: WTPD

• Suppose that prices vary in an approximately proportional manner

from period to period:

ptn = atbnetn ;                                                    t = 1,...,T; n = 1,...,N.

• The parameter at can be interpreted as the price level for period t, 

bn can be interpreted as a commodity n quality adjustment factor 

and etn is a stochastic error term with mean 1. 

• Taking logarithms leads to the following linear regression model:

ytn = t + n + tn ;                                                 t = 1,...,T; n = 1,...,N.  

• The t and n can be estimated by solving a least squares 

minimization problem.



Multilateral Methods: WTPD

• Using expenditure shares yields the Weighted Time Product 

Dummy (WTPD) approach suggested by IDF (2009). 

• The WTPD multilateral method is recommended from the viewpoint 

of the economic approach to index number theory if:

o Purchaser preferences are well approximated by Cobb-Douglas 

preferences 

→ Elasticity of substitution equal to one.

o Purchaser preferences are well approximated by linear preferences 

→ Perfect substitutability. 

(We show that it is an approximately additive multilateral 

method.)



Multilateral Methods: Geary-Khamis

Total consumption vector over a time period “window”:

𝒒 ≡ ෍

𝒕=𝟏

𝑻

𝒒𝒕

where q  [q1,q2,...,qN].

Equations that determine price levels and quality adjustment factors:
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(Normalization required for a unique solution.)



Multilateral Methods: Geary-Khamis

Period t quantity is then:

Qt = ptqt/Pt = bqt

• The GK method is recommended from the viewpoint of the economic 

approach to index number theory if:

o Purchaser preferences are well approximated by Leontief 

preferences 

→ Elasticity of substitution equal to zero.

o Purchaser preferences are well approximated by linear preferences 

→ Perfect substitutability.



Rolling Windows and the Linking Problem

• A headline CPI cannot be revised from month to month. 

• What to do when another period’s data becomes available? 

IDF(2011): 

• Add the data for the new period (T+1)  and drop the oldest period 

(t=1). 

• Multilateral indexes for the new time window (t=2,…, T+1) are 

calculated.

• Choose a linking period and extend the old window. IDF used the 

most recent overlapping observation (T) → “movement splice”

• The resulting indexes are called Rolling Window indexes, or for a 

thirteen month window, Rolling Year indexes. 



Rolling Windows and the Linking Problem

• IDF noted that there are other potential extension methods.

• Krsinich (2016):  Link the windows at t=2 rather than T.

→ “window splice”

• de Haan (2015): Link period should be near the middle of the first 

window, i.e. t = T/2, or t = (T+1)/2 if T is odd. 

→ “half splice”

• DF: Ex ante, each choice of linking period t = 2 to t = T is equally 

valid. Suggest taking the geometric mean of the period T+1 price 

levels obtained by using each linking period in turn.

→ “mean splice”

• NB: Linking method may introduce chain drift bias (but in practice, 

it is usually small)



Rolling Windows and the Linking Problem

• An alternative is to try to link through a “similar” period: leads to 

the Similarity Linking Method (see the work of Robert Hill) 

• If the price and quantity data for period T+1 are exactly equal to the 

data for period t, then linking the windows at observation t will 

preserve the identity test over the two windows

• Also holds for the case for equal shares and proportional price 

vectors. 

• This is attractive, but need measures of “similarity” of the data 

between T+1 and t. 

• Diewert (2009) proposed:

• Weighted Log Quadratic Index of Relative Price Dissimilarity

• Asymptotically Linear Index of Relative Price Dissimilarity



Rolling Windows and the Linking Problem

• Can use these measures for linking windows in a rolling window 

approach.

• Or can use these to create a new multilateral index, using the 

dissimilarity measures to determine a unique “path” for bilateral 

index comparisons that can then be linked.

• For example: 

o Period 2 most similar to period 1

o Period 3 most similar to period 1

o Period 4 most similar to period 3

1, PF(p1,p2,q1,q2), PF(p1,p3,q1,q3), PF(p1,p3,q1,q3)PF(p3,p4,q3,q4),….



Simulations: CES Preferences

• A problem with existing comparisons of methods is that it is not 

known which method is closest to the “truth”.

• We constructing an artificial data set that is exactly consistent with 

purchasers having CES preferences over a group of related items.

CES unit cost function has the following functional form: 

c(p1,...,pN)  [n=1 npn
1−]1/(1−) if   0 and   1

 n=1 if  = 1

where  and the n are positive parameters, with n=1 n = 1. 

The parameter  is the elasticity of substitution.



Simulations: CES Preferences

• T = 12 and N = 4

•   [1,2,3,4]  [0.2, 0.2, 0.2, 0.4]

•  will take on the values 0, 0.5, 1, 2, 4, 10 and 20

• In the scanner data context, it is likely that  is between 1 and 5.

• Set up: 

• Prices of commodities 1 and 3 trend downward while the prices of 

commodities 2 and 4 trend upward. 

• The trends in commodities 1 and 4 are very smooth but the trends in 

commodities 2 and 3 are interrupted by sales: item 2 goes on sale in 

periods 2 and 8 and item 3 goes on sale in periods 5 and 10. 

• Total expenditures trend upwards except in the four periods after a sale 

when aggregate expenditures fall a bit.



Table 3: Price and Expenditure Data for the Artificial Data Set

 

t pt1 pt2 pt3 pt4 et 

1 2.00 1.00 1.00 0.50 10 

2 1.75 0.50 0.95 0.55 13 

3 1.60 1.05 0.90 0.60 11 

4 1.50 1.10 0.85 0.65 12 

5 1.45 1.12 0.40 0.70 15 

6 1.40 1.15 0.80 0.75 13 

7 1.35 1.18 0.75 0.70 14 

8 1.30 0.60 0.72 0.65 17 

9 1.25 1.20 0.70 0.70 15 

10 1.20 1.25 0.40 0.75 18 

11 1.15 1.28 0.70 0.75 16 

12 1.10 1.30 0.65 0.80 17 

 





Simulations: CES Preferences

For elasticities of substitution in the most likely range of 1 to 4:

• The four methods based on the use of bilateral superlative indexes 

approximate CES preferences reasonably well with the chained 

Törnqvist generally doing the best. (Consistent with the 2004 CPI 

Manual advice).

• GK indexes have substantial upward biases.

• WTPD indexes also have substantial upward biases when  equals 

2 or 4, but they are unbiased when  = 1. 

• The above results were derived when we knew the “truth” and the 

data were consistent with cost minimizing CES consumers.

• In the following slides, consumers will move away from their CES 

preferences in periods following a sale of some products. 



Simulations: CES Preferences

• The economic approach to index number theory assumes that the 

consumption of goods takes place within the period of purchase. 

• But consumers tend to stock up during sales to partially satisfy 

their needs for the subsequent period.

• We adjust the data so that quantities in the periods following sales 

are half of the predicted levels generated by the CES model.

• Hence, for these periods, have new total expenditures, new quantity 

vectors and new expenditure shares for each elasticity. 

• For periods 1,2,4,5,7,8,10 and 12, the Pt and CES
t  Pt/P1 for the new 

data set are the same as before. 

• For periods 3, 6, 9 and 11, there are no CES price levels but for 

convenience, in Figure 3 we simply use the old CES
t .





Simulations: CES Preferences

• Chained superlative indexes are not useful target indexes for a CPI 

when dealing with aggregating scanner data where discounted prices 

are prevalent. They have substantial downward chain drift biases.

• The CCDI multilateral method worked best overall for our numerical 

example for elasticities of substitution in the range 0    4.

• Similarity Linking also worked well.

• GK indexes had substantial upward biases relative to the 

corresponding CES true cost of living price levels for elasticities of 

substitution in the range 1    4.

• Weighted Time Product Dummy indexes will work well if  = 1 or if  

10 but for our example, they had substantial upward biases for 

elasticities of substitution in the range 2    4.



Simulations: Linking the Windows

In what follows, three tables of simulation results are presented:

1. Differences at Period 12 between the single window CCDI price 

levels and the linked CCDI price levels as functions of the linking 

period and the elasticity of substitution.

o If these differences are large in magnitude, then this indicates a chain 

drift problem with the use of successive CCDI linked windows.

2. Biases at Period 12 as a function of the linking period and the 

elasticity of substitution.

o The bias in the various two window CCDI period 12 price levels 

compared to the corresponding period 12 true (CES) cost of living 

indexes.

3. The mean absolute differences between our ten approximating 

indexes to the corresponding true CES cost of living indexes. 

o Exclude periods 3, 6, 9 and 11 from this comparison because the true 

cost of living is not defined for these observations. 



Table 4: Differences at Period 12, D(t,σ), between the Single Window 

CCDI Price Levels and the Linked CCDI Price Levels as Functions of 

the Linking Period t and the Elasticity of Substitution σ

 

t D(t,0) D(t,0.5) D(t,1) D(t,2) D(t,4) D(t,10) 

2 0.00030 0.00014 0.00021 0.00067 0.00212 0.01004 

3 -0.00197 -0.00149 -0.00098 0.00050 0.00567 0.02197 

4 -0.00001 0.00011 0.00021 0.00098 0.00603 0.02640 

5 -0.00029 0.00000 0.00021 0.00006 -0.00222 0.01370 

6 0.00154 0.00206 0.00265 0.00442 0.01035 0.03114 

7 0.00002 0.00011 0.00021 0.00092 0.00537 0.02639 

8 0.00041 0.00022 0.00021 0.00125 0.00645 0.02581 

9 -0.00177 -0.00137 -0.00098 0.00014 0.00451 0.02312 

10 -0.00015 0.00003 0.00021 0.00010 -0.00202 0.01647 

11 0.00151 0.00204 0.00265 0.00432 0.00946 0.02675 

Mean -0.00004 0.00019 0.00046 0.00133 0.00457 0.02216 

 



Table 5: Biases at Period 12, B(t, σ), as Functions of the Linking Period 

t and the Elasticity of Substitution σ
 

t B(t,0) B(t,0.5) B(t,1) B(t,2) B(t,4) B(t,10) 

2 -0.00002 0.00068 0.00249 0.00187 -0.03189 -0.11420 

3 -0.00230 -0.00094 0.00130 0.00169 -0.02833 -0.10227 

4 -0.00034 0.00065 0.00249 0.00218 -0.02797 -0.09784 

5 -0.00061 0.00054 0.00249 0.00126 -0.03622 -0.11054 

6 0.00122 0.00260 0.00494 0.00562 -0.02365 -0.09310 

7 -0.00031 0.00065 0.00249 0.00212 -0.02864 -0.09785 

8 0.00008 0.00076 0.00249 0.00244 -0.02756 -0.09843 

9 -0.00210 -0.00083 0.00130 0.00134 -0.02949 -0.10112 

10 -0.00048 0.00057 0.00249 0.00130 -0.03603 -0.10777 

11 0.00118 0.00258 0.00494 0.00551 -0.02455 -0.09749 

Mean -0.00037 0.00073 0.00274 0.00253 -0.02944 -0.10208 

 



Table 8: Mean Absolute Differences in Percentage Points between 

πCES
t(σ) and Ten Approximating Indexes as Functions of the Elasticity 

of Substitution σ 

 BFCH BTCH BFFB BTFB BWTPD BGK BGEKS BCCDI BAL BLQ 

0 3.78 4.77  0.00 0.11 1.66 0.00 0.12 0.08 0.55 0.63 

0.5 3.89 4.84  0.12 0.04 0.89 1.19 0.05 0.17 0.47 0.43 

1 4.06 4.81  0.46 0.00 0.00 2.58 0.17 0.29 0.53 0.27 

2 4.81 4.75  1.91 0.37 2.19 5.68 1.40 0.10 1.07 0.47 

4 6.84 5.65  5.96 3.41 5.37 8.90 4.98 2.47 2.69 1.61 

10 9.08 7.68 10.83 9.19 4.91 5.01 9.57 7.83 6.05 5.08 

 



Summary

• The Chained Fisher and Chained Törnqvist indexes performed poorly 

for all elasticities of substitution.

• The Weighted Time Product Dummy indexes worked well for our 

numerical example when the elasticity of substitution  was equal to 1 

or 10 but they did not work well when  was equal to 2 or 4. 

• The Geary-Khamis indexes worked well when  = 0 or 10 but poorly 

when  = 1, 2 or 4. 

• For 0    0.5, the Fixed Base Fisher, Fixed Base Törnqvist, GEKS 

and CCDI indexes all worked well. However the cases where   1 are 

the cases of interest.

• For 1    2, the CCDI indexes performed well.

• The LQ price similarity linked indexes performed the best for  = 4 and 

the LQ generally performed well for 1    10.



Caveats and Conclusions
• The conclusions of this study are based on only a single artificial data 

set example. More research into how the different multilateral methods 

perform under different conditions is needed.

• We have assumed that all prices and quantities are positive over all 

periods, hence ignoring the problem of new and disappearing goods. 

• Linking the price and quantity data for a new period to the data of 

previous periods by using a price dissimilarity measure is the only 

multilateral method that is consistent with Walsh’s powerful 

multiperiod identity test.

• But similarity linking requires agreement on how to measure the 

degree of price and share dissimilarity. More research needed.

• In the meantime, overall our results suggest the use of the CCDI 

(GEKS-Törnquist) index with the mean splice, for updating. 


