

MATHEMATICAL FRONTIERS

The National Academies of SCIENCES ENGINEERING MEDICINE

nas.edu/MathFrontiers

Board on Mathematical Sciences & Analytics

MATHEMATICAL FRONTIERS 2018 Monthly Webinar Series, 2-3pm ET

February 13*: *Mathematics of the Electric Grid*

March 13*: Probability for People and Places

April 10*: Social and Biological Networks

May 8*: Mathematics of Redistricting

June 12*: Number Theory: The Riemann Hypothesis

July 10*: Topology

August 14*: Algorithms for Threat Detection

September 11*: Mathematical Analysis

October 9: Combinatorics

November 13: *Why Machine Learning Works*

December 11: *Mathematics of Epidemics*

Made possible by support for BMSA from the National Science Foundation Division of Mathematical Sciences and the Department of Energy Advanced Scientific Computing Research

* Recording posted

MATHEMATICAL FRONTIERS Combinatorics

Sara Billey, University of Washington

Jacques Verstraete, University of California, San Diego

Mark Green, UCLA (moderator)

MATHEMATICAL FRONTIERS Combinatorics

John Rainwater Faculty Fellow and Professor of Mathematics in the Department of Mathematics at the University of Washington

What is Combinatorics?

Sara Billey, University of Washington

What is Combinatorics?

Combinatorics is

the nanotechnology of mathematics

This technology applies to problems on

- Existence
- Enumeration
- Optimization

of discrete structures taking into account constraints, patterns, preferences, and rules.

Applications

In the past 100 years, combinatorics has revolutionized the way we think about problems in

- Biology
- Chemistry
- Computer Science
- Physics
- Industry
- Government
- Mathematics

Examples

- The Stable Matching Algorithm
- Tanglegrams

Example 1: Stable Matching

- In 1952, the National Resident Matching Program (NRMP) introduced an algorithm to match medical students to residency positions at hospitals in a way that respects the preferences of the students and hospitals without any there being any student-hospital pair who prefer each other over their assignment.
- In 1962, David Gale and Lloyd Shapley proved that the algorithm always produces an assignment which is simultaneously optimal for all students among all stable matchings.
- In 2012, Lloyd Shapley and Alvin Roth won the Nobel prize in Economics for their work realizing other non-monetary markets where the Stable Match Algorithm should be applied: kidney donation.
- How does it work?

• Students and hospitals each input a ranked list showing their preferences for the match.

Student Prfs	Boston	Houston	Seattle
Andrea	2	1	3
Lakshmi	1	3	2
Ming	2	1	3

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

• Students and hospitals each input a ranked list showing their preferences for the match.

Student Prfs	Boston	Houston	Seattle
Andrea	2	1	3
Lakshmi	1	3	2
Ming	2	1	3

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

• Students and hospitals each input a ranked list showing their preferences for the match.

Student Prfs	Boston	Houston	Seattle
Andrea	2	1	3
Lakshmi	1	3	2
Ming	2	1	3

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

Students and hospitals each input a ranked list showing their preferences for the match.

Student Prfs	Boston	Houston	Seattle	
Andrea	2	1	3	C
Lakshmi	1	3	2	A L
Ming	2	1	3	Ν

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

One match: Andrea – Houston, Lakshmi – Boston, Ming –Seattle

Unstable pair: Ming – Houston prefer each other over their assignment

Key Questions

- **Definition**: An assignment of students to hospitals is a stable matching if no student and hospital prefer each other over the one given by the assignment.
- Existence Question: Given any input preferences of n students and n hospitals, does a stable matching always exist?
- Enumeration Question: If so, how many stable matchings are there at most for n students and n hospitals?
- Optimization Question: Given any input preferences of n students and n hospitals, what is the best possible assignment for students? For hospitals?

- Each student "proposes" to their first choice of hospital.
- Then, hospitals reject all but their highest ranked proposal.
- Rinse, lather, repeat!

Boston	Houston	Seattle
2	1	3
1	3	2
2	1	3
	Boston 2 1 2	BostonHouston211321

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

- Each student "proposes" to their first choice of hospital.
- Then, hospitals reject all but their highest ranked proposal.
- Rinse, lather, repeat!

Boston	Houston	Seattle
2	1	3
1	3	2
2	1	3
	Boston 2 1 2	BostonHouston211321

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

- Each student "proposes" to their first choice of hospital.
- Then, hospitals reject all but their highest ranked proposal.
- Rinse, lather, repeat!

	3
3	2
	3
	3

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

- Each student "proposes" to their first choice of hospital.
- Then, hospitals reject all but their highest ranked proposal.
- Rinse, lather, repeat!

Student Prfs	Boston	Houston	Seattle
Andrea	2		3
Lakshmi		3	2
Ming	2	1	3

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

- Each student "proposes" to their first choice of hospital.
- Then, hospitals reject all but their highest ranked proposal.
- Rinse, lather, repeat!

Student Prfs	Boston	Houston	Seattle	
Andrea	2		3	
Lakshmi		3	2	
Ming	2		3	

Another match: Andrea – Boston, Lakshmi – Seattle, Ming – Houston

Hospital Prfs	Andrea	Lakshmi	Ming
Boston	2	3	1
Houston	2	3	1
Seattle	3	2	1

Stable! No pair wants to disregard this assignment.

- Theorem (Gale-Shapley): For any input preferences by n students and n hospitals, the Stable Match Algorithm produces an assignment with no unstable pairs.
- **Theorem (Gale-Shapley)**: Among all stable matchings of n students with n hospitals, this algorithm always finds the unique one that is best possible for every student.
- **Theorem** (Gale-Shapley): Among all stable matchings of n students with n hospitals, this algorithm always finds the unique one that is worst possible for every hospital.
- Theorem (Knuth): The Stable Match Algorithm runs in O(n²) time on input from n students and n hospitals.

Success of the Match Program

NRMP Press Release from March 16, 2018

Largest Match on Record

The 2018 Main Residency Match is the largest in NRMP history. A record-high 37,103 applicants submitted program choices for 33,167 positions, the most ever offered in the Match.

Open Question: What other problems can be solved by the Stable Match Algorithm?

Enumeration Question: How many stable matchings exist for n students and n hospitals? (<u>https://oeis.org/A005154</u>)

See Also: The Stable Roommate Problem on Wikipedia

Example 2: Tanglegrams

https://evolutionnews.org/2012/01/parallel_host_a/

Definition: A tanglegram is a pair of binary trees with a matching between their leaves. They represent two phylogenetic trees of symbiotic organisms.

Counting Tanglegrams

Erick Matsen, Arnold Kas and their team at the Fred Hutchinson Cancer Research Center study mathematical biology.

Enumerative Question (Matsen 2015):

Is there a nice formula to count the number of distinct tanglegrams with n leaves up to symmetries of the left tree and the right tree?

Example: for n=4 there are 13 tanglegrams

Counting Tanglegrams

Enumerative Question (Matsen 2015):

Is there a nice formula to count the number of distinct tanglegrams with n leaves up to symmetries of the left tree and the right tree?

Yes!

Theorem (Billey-Konvalinka-Matsen 2017): The number of tanglegrams of size n is

$$t_n = \sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_i + \cdots + \lambda_{\ell(\lambda)}) - 1 \right)^2}{z_{\lambda}},$$

summed over all binary partitions of n. The z-numbers are well known constants.

Counting Tanglegrams

Corollaries of the (Billey-Konvalinka-Matsen) Formula:

• The number of tanglegrams grows quickly:

$$\frac{t_n}{n!} \sim \frac{e^{\frac{1}{8}}4^{n-1}}{\pi n^3}$$

- We can compute the exact number of tanglegrams for n as large as 4000 using a recurrence relation derived from the formula.
- There is an algorithm to find a tanglegram of size n uniformly at random so we can study the average behavior of these objects.

Typical Tanglegrams

Reprise

- Questions about existence, enumeration, and optimization of discrete structures appear in many science and industrial applications.
- Combinatorial algorithms for answering these questions have led to faster, cheaper, and more accurate solutions to many problems in our lives.
- Still many questions unanswered.
- Come, join, contribute to the Combinatorics Revolution!

Resources and Acknowledgements

Many thanks to my colleagues on bboard@math.uw for help on preparing this talk!

Thanks to all of you for listening and participating!

Resources:

- " College Admissions and the Stability of Marriage". David Gale and Lloyd Shapley. MAA Math Montly 69, 9-14, 1962.
- "On the enumeration of tanglegrams and tangled chains" Sara Billey, Matjaz Konvalinka, Frederick A Matsen IV, J. Combin. Theory Ser. A, 146, pp 239--263, 2017.
- " Fingerprint Databases for Theorems" Sara Billey and Bridget Tenner. Notices of the AMS 60:8 (2013).
- "How to apply de Bruijn graphs to genome assembly" Phillip E C Compeau, Pavel A Pevzner, and Glenn Tesler. Nature Biotechnology 29, 987–991 (2011) http://www.nature.com/nbt/journal/v29/n11/full/nbt.2023.html

MATHEMATICAL FRONTIERS Combinatorics

Graduate Vice-Chair and Professor of Mathematics in the Department of Mathematics at the University of California, San Diego

The Analysis of Finite Structures

Jacques Verstraete, University of California, San Diego

- Combinatorics is the study of finite structures.
- The central objects in combinatorics are often motivated by concerns in other areas of science, especially theoretical computer science, bioinformatics and statistical physics.
- In turn, combinatorics has applications to other areas of mathematics, such as number theory, geometry, probability, and algebra.

- One of the most attractive topics in mathematics is the study of prime numbers.
- Prime factorization: every integer *n* > 1 is a product of primes.

 $11111 = 41 \cdot 271 \quad 111111 = 3 \cdot 7 \cdot 11 \cdot 37 \quad 1111111 = 239 \cdot 4649$

- Cryptography: RSA based on hardness of finding prime factorization. Variants underlie much of modern electronic security.
- Primality testing: polynomial time. (Agrawal, Kayal, Saxena, 2002)

 Goldbach's Conjecture¹⁷⁴² : every even number larger than 2 is the sum of two primes.

fabor, night boghafan , ab mina aban for mal four tauliefab , mame singlet feries lauter numeros uniso modo in duo quadrata divisibiles griba jour folige Dring will of suf min conjecture kazardiom : Jap jar Zafl vorleja sub zornym numerie primis Jupanumgnfatzat if in aggregation for vialan numerorum primorum glag all wan will for sin unitation wit see is guandand hip and In congerier omnium unitation ? give formigne $4 = \begin{cases} i+i+i+i \\ i+i+2 \\ i+3 \end{cases} \qquad 5 = \begin{cases} i+3 \\ i+i+3 \\ i+i+i+2 \\ i+1+i+1+i \end{cases} \qquad 6 = \begin{cases} i+5 \\ i+2+3 \\ i+1+i+3 \\ i+1+i+1+i \end{cases}$

• The Extended Goldbach Conjecture states that the number R(n) of representations of n as a sum of two primes satisfies:

$$R(n) \sim 2 \prod_{2} \cdot \prod_{\substack{p>2\\p|n}} \frac{p-1}{p-2} \cdot \int_{2}^{n} \frac{1}{(\log x)^{2}} dx$$

(Hardy-Littlewood, 1923)

 Goldbach's Conjecture¹⁷⁴² : every even number larger than 2 is the sum of two primes.

• Lagrange¹⁷⁷⁰ : for every positive integer k there exists a progression of k primes.

	397	401	409	419
461 463	467		479	487
		541	547	557
9 601	607	613	617 619	
673	677	683	691	
743		751	757 761	769
9 811		821 823	827 829	839
881 883	887			907
953			967 971	977
9 1021		1031 1033	1039	1049
1091 1093	1097	1103	1109	1117
1163		1171	1181	1187
9 1231	1237		1249	1259
1301 1303	1307		1319 1321	1327
1373		1381		1399
9	1447	1451 1453	1459	
1511		1523	1531	
1583			1597 1601	1607 1609
	1657	1663	1667 1669	
1721 1723		1733	1741	1747
		1801	1811	
1861	1867	1871 1873	1877 1879	1889
1931 1933			1949 1951	
2003		2011	2017	2027 2029
		2081 2083	2087 2089	2090
		2081 2083	2087 2089	2090
2003		2011	2017	2027 2029

The probabilistic method

- In many areas of mathematics, one is required to construct a structure under a prescribed list of constraints, or at least prove its existence.
- The probabilistic method was introduced by Paul Erdős over fifty years ago.
- The next examples illustrate one of the organizing principles of the method:

if it seems likely that the structure we want is roughly uniform, then a random example is worth trying.

- Suppose we select a random set of numbers from 1 to n, where each number is selected independently with probability p.
- We would expect every interval of m consecutive numbers contains about pm selections.

- The set of even numbers, on the other hand, should be considered to be "structured".
- More generally, any union of few arithmetic progressions should be considered "structured"

- For instance, consider the set of prime numbers.
- According to the Prime Number Theorem, there are roughly $\frac{n}{\log n}$ primes less than n.

• Cramér's Conjecture : There is a prime between n and about $n + (\log n)^2$ for every n. (Cramér, 1936)

- A graph is a set of vertices / nodes together with a set of pairs of vertices called edges.
- These are fundamental objects in combinatorics.

- When is a graph "random"?
- Place edges randomly and independently with probability *p*.

• Given any set X of vertices, we expect $p \begin{pmatrix} |X| \\ 2 \end{pmatrix}$ edges of the graph to lie inside X.

• We call an *n*-vertex graph of density p an ε -quasirandom graph if for every set X

$$\left| e(X) - p \begin{pmatrix} |X| \\ 2 \end{pmatrix} \right| < \varepsilon p n^2$$

• When is a graph "quasirandom"?

 How to tell if a graph is random? Using spectral theory of the graph matrices.

• Expander Mixing Lemma (Alon, 1986)

$$\left| e(X) - p\binom{|X|}{2} \right| \leq \lambda |X|$$

- How to tell if a graph is random? Counting quadrilaterals.
- Thomason (1987), Chung-Graham-Wilson (1991)

A graph with n vertices and density p is ε -quasirandom if and only if the number of quadrilaterals in the graph is at $most (1 + \varepsilon^4)(pn)^4$.

 Quasirandom graphs appear frequently in applications, for example in coding and information theory (expander graphs).

- We can use graphs to find arithmetic progressions in sets of integers.
- Szemeredi's Theorem (1975)

Every set of integers positive density contains arbitrarily long progressions.

• The arithmetic progression {3,5,7}

Breakthroughs

• Theorem. (Green-Tao Theorem, 2006)

The primes contain arbitrarily long arithmetic progressions.

Conclusion

- Combinatorics has burgeoned into a fundamental part of modern mathematics, establishing many connections and applications to many other areas of science.
- We discussed a general modern theme in combinatorics, which is to distinguish between randomness and structure in combinatorial objects.
- The probabilistic method has led to a number of recent breakthroughs.

MATHEMATICAL FRONTIERS Combinatorics

Sara Billey, University of Washington

Jacques Verstraete, University of California, San Diego

Mark Green, UCLA (moderator)

MATHEMATICAL FRONTIERS 2018 Monthly Webinar Series, 2-3pm ET

February 13*: *Mathematics of the Electric Grid*

March 13*: Probability for People and Places

April 10*: Social and Biological Networks

May 8*: Mathematics of Redistricting

June 12*: Number Theory: The Riemann Hypothesis

July 10*: Topology

August 14*: Algorithms for Threat Detection

September 11*: Mathematical Analysis

October 9: Combinatorics

November 13: *Why Machine Learning Works*

December 11: *Mathematics of Epidemics*

Made possible by support for BMSA from the National Science Foundation Division of Mathematical Sciences and the Department of Energy Advanced Scientific Computing Research

* Recording posted