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What is Combinatorics?

Combinatorics is 
the nanotechnology of mathematics

This technology applies to problems on 
• Existence
• Enumeration
• Optimization
of discrete structures taking into account constraints, patterns, 
preferences, and rules.
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Applications

In the past 100 years, combinatorics has revolutionized the 
way we think about problems in 
• Biology
• Chemistry
• Computer Science
• Physics
• Industry
• Government
• Mathematics



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Examples

• The Stable Matching Algorithm

• Tanglegrams
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Example 1: Stable Matching

• In 1952, the National Resident Matching Program (NRMP)
introduced an algorithm to match medical students to residency 
positions at hospitals in a way that respects the preferences of the 
students and hospitals without any there being any student-hospital 
pair who prefer each other over their assignment. 

• In 1962, David Gale and Lloyd Shapley proved that the algorithm 
always produces an assignment which is simultaneously optimal for all 
students among all stable matchings. 

• In 2012, Lloyd Shapley and Alvin Roth won the Nobel prize in 
Economics for their work realizing other non-monetary markets where 
the Stable Match Algorithm should be applied: kidney donation.

• How does it work?
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• Students and hospitals each input a ranked list showing their 
preferences for the match. 

Student Prfs Boston Houston Seattle

Andrea 2 1 3

Lakshmi 1 3 2

Ming 2 1 3

Hospital Prfs Andrea Lakshmi Ming

Boston 2 3 1

Houston 2 3 1

Seattle 3 2 1

Stable Matching: How does it work?
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• Students and hospitals each input a ranked list showing their 
preferences for the match. 

Student Prfs Boston Houston Seattle

Andrea 2 1 3

Lakshmi 1 3 2

Ming 2 1 3

Hospital Prfs Andrea Lakshmi Ming

Boston 2 3 1

Houston 2 3 1

Seattle 3 2 1

One match:  
Andrea – Houston,  
Lakshmi – Boston, 
Ming –Seattle

Unstable pair:
Ming – Houston
prefer each other
over their 
assignment

Stable Matching: How does it work?
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Key Questions

• Definition:   An assignment of students to hospitals is a stable 
matching if no student and hospital prefer each other over the one 
given by the assignment.  

• Existence Question: Given any input preferences of n students 
and n hospitals, does a stable matching always exist? 

• Enumeration Question:  If so, how many stable matchings are 
there at most for n students and n hospitals?

• Optimization Question: Given any input preferences of n 
students and n hospitals, what is the best possible assignment for 
students? For hospitals?
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Stable Match Algorithm

• Each student “proposes” to their first choice of hospital. 
• Then, hospitals reject all but their highest ranked proposal. 
• Rinse, lather, repeat!

Student Prfs Boston Houston Seattle

Andrea 2 1 3

Lakshmi 1 3 2

Ming 2 1 3

Hospital Prfs Andrea Lakshmi Ming

Boston 2 3 1

Houston 2 3 1

Seattle 3 2 1
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Stable Match Algorithm

Student Prfs Boston Houston Seattle

Andrea 2 1 3

Lakshmi 1 3 2

Ming 2 1 3

Hospital Prfs Andrea Lakshmi Ming

Boston 2 3 1

Houston 2 3 1

Seattle 3 2 1

Another match:  
Andrea – Boston,  
Lakshmi – Seattle, 
Ming – Houston

Stable!
No pair wants to 
disregard this 
assignment. 

• Each student “proposes” to their first choice of hospital. 
• Then, hospitals reject all but their highest ranked proposal. 
• Rinse, lather, repeat!
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• Theorem (Gale-Shapley):   For any input preferences by n 
students and n hospitals, the Stable Match Algorithm produces 
an assignment with no unstable pairs.

• Theorem (Gale-Shapley):  Among all stable matchings of n 
students with n hospitals, this algorithm always finds the unique 
one that is best possible for every student.  

• Theorem (Gale-Shapley):  Among all stable matchings of n 
students with n hospitals, this algorithm always finds the unique 
one that is worst possible for every hospital.  

• Theorem (Knuth): The Stable Match Algorithm runs in O(n2) 
time on input from n students and n hospitals.   

Stable Match Algorithm
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Success of the Match Program

NRMP Press Release from March 16, 2018 

Largest Match on Record
The 2018 Main Residency Match is the largest in NRMP history. 
A record-high 37,103 applicants submitted program choices for 
33,167 positions, the most ever offered in the Match. 

Open Question:  What other problems can be solved by the Stable 
Match Algorithm?  

Enumeration Question:  How many stable matchings exist for n 
students and n hospitals? (https://oeis.org/A005154)

See Also:  The Stable Roommate Problem on Wikipedia
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Example 2: Tanglegrams

https://evolutionnews.org/2012/01/parallel_host_a/

Definition:  A tanglegram is a pair of binary trees with a matching between their 
leaves.  They represent two phylogenetic trees of symbiotic organisms.  
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Counting Tanglegrams

Erick Matsen, Arnold Kas and their team at the Fred Hutchinson Cancer Research Center 
study mathematical biology.

Enumerative Question (Matsen 2015):
Is there a nice formula to count the number of distinct tanglegrams with n leaves up to 
symmetries of the left tree and the right tree?

Example:  for n=4  there are 13 tanglegrams
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Counting Tanglegrams

Enumerative Question (Matsen 2015):
Is there a nice formula to count the number of distinct tanglegrams with n 
leaves up to symmetries of the left tree and the right tree?

Yes!

Theorem (Billey-Konvalinka-Matsen 2017):  The number of tanglegrams of 
size n is 

summed over all binary partitions of n. The z-numbers are well known 
constants. 
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Corollaries of the (Billey-Konvalinka-Matsen) Formula:

• The number of tanglegrams grows quickly:

• We can compute the exact number of tanglegrams for n as large as 
4000 using a recurrence relation derived from the formula.

• There is an algorithm to find a tanglegram of size n uniformly at 
random so we can study the average behavior of these objects.

Counting Tanglegrams
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Typical Tanglegrams

n=10 n=20

n=30
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Reprise

• Questions about existence, enumeration, and optimization of 
discrete structures appear in many science and industrial 
applications. 

• Combinatorial algorithms for answering these questions have 
led to faster, cheaper, and more accurate solutions to many 
problems in our lives.

• Still many questions unanswered.  

• Come, join, contribute to the Combinatorics Revolution!
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Resources and Acknowledgements

Many thanks to my colleagues on bboard@math.uw for help on 
preparing this talk! 

Thanks to all of you for listening and participating!

Resources:
“ College Admissions and the Stability of Marriage”.  David Gale and Lloyd Shapley.  MAA Math 

Montly 69, 9-14, 1962.
“On the enumeration of tanglegrams and tangled chains” Sara Billey, Matjaz Konvalinka, Frederick 

A Matsen IV, J. Combin. Theory Ser. A, 146, pp 239--263, 2017. 
“ Fingerprint Databases for Theorems” Sara Billey and Bridget Tenner. Notices of the AMS 60:8 

(2013).
“How to apply de Bruijn graphs to genome assembly” Phillip E C Compeau, Pavel A Pevzner, and  

Glenn Tesler.  Nature Biotechnology 29, 987–991 (2011) 
http://www.nature.com/nbt/journal/v29/n11/full/nbt.2023.html
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Introduction

• Combinatorics is the study of finite structures. 

• The central objects in combinatorics are often motivated by 
concerns in other areas of science, especially theoretical 
computer science, bioinformatics and statistical physics.

• In turn, combinatorics has applications to other areas of 
mathematics, such as number theory, geometry, 
probability, and algebra.
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• One of the most attractive topics in mathematics is the 
study of prime numbers. 

• Prime factorization: every integer n > 1 is a product of 
primes.

Introduction
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• Cryptography: RSA based on hardness of finding prime 
factorization. Variants underlie much of modern electronic 
security.

• Primality testing: polynomial time. (Agrawal, Kayal, 
Saxena, 2002) 

Introduction
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• Goldbach’s Conjecture1742 : every even number larger than 2 
is the sum of two primes.

Introduction
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Quasirandomness

• The Extended Goldbach Conjecture states that the number 
R(n) of representations of n as a sum of two primes satisfies:

(Hardy-Littlewood, 1923)  
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• Goldbach’s Conjecture1742 : every even number larger than 2 
is the sum of two primes.

Introduction
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• Lagrange1770 : for every positive integer k there exists a 
progression of k primes.

Introduction
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The probabilistic method

• In many areas of mathematics, one is 
required to construct a structure under a 
prescribed list of constraints, or at least 
prove its existence. 

• The probabilistic method was introduced 
by Paul Erdõs over fifty years ago.

• The next examples illustrate one of the 
organizing principles of the method: 

if it seems likely that the structure we want is roughly uniform, 

then a random example is worth trying.
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Randomness versus Structure

• Suppose we select a random set of numbers from 1 to n, where 
each number is selected independently with probability p.

• We would expect every interval of m consecutive numbers 
contains about pm selections.  
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• The set of even numbers, on the other hand, should be 
considered to be “structured”. 

• More generally, any union of few arithmetic progressions 
should be considered “structured”

Randomness versus Structure
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• For instance, consider the set of prime numbers.

• According to the Prime Number Theorem, there are 
roughly        primes less than .

Randomness versus Structure
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Randomness versus Structure

• Cramér’s Conjecture : There is a prime between and 
about                 for every   . (Cramér, 1936)
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• A graph is a set of vertices / nodes together with a set of 
pairs of vertices called edges. 

• These are fundamental objects in combinatorics. 

Randomness versus Structure
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• When is a graph “random”? 

• Place edges randomly and 
independently with probability p.

Randomness versus Structure
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Quasirandomness

• Given any set X of vertices, we expect            edges of the 
graph to lie inside X.  

• We call an n-vertex graph of density p an "-quasirandom
graph if for every set X
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• When is a graph “quasirandom”? 

Randomness versus Structure
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• How to tell if a graph is random? Using spectral theory 
of the graph matrices.

• Expander Mixing Lemma (Alon, 1986)

Quasirandomness
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• How to tell if a graph is random? Counting quadrilaterals.

• Thomason (1987), Chung-Graham-Wilson (1991)

A graph with n vertices and density p is "-quasirandom if 
and only if the number of quadrilaterals in the graph is at 
most              .

• Quasirandom graphs appear frequently in applications, for 
example in coding and information theory (expander graphs).

Quasirandomness
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Quasirandomness

• We can use graphs to find arithmetic progressions in sets 
of integers.

• Szemeredi’s Theorem (1975)
Every set of integers positive density 
contains arbitrarily long progressions.
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• The arithmetic progression {3,5,7}

Quasirandomness
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Breakthroughs

• Theorem. (Green-Tao Theorem, 2006)

The primes contain arbitrarily long arithmetic 
progressions.
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Conclusion

• Combinatorics has burgeoned into a fundamental part of 
modern mathematics, establishing many connections and 
applications to many other areas of science. 

• We discussed a general modern theme in combinatorics, 
which is to distinguish between randomness and structure in 
combinatorial objects. 

• The probabilistic method has led to a number of recent 
breakthroughs. 



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Jacques Verstraete,
University of California, San Diego

Sara Billey,
University of Washington

Mark Green, 
UCLA (moderator)

MATHEMATICAL FRONTIERS
Combinatorics

51



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

February 13*:
Mathematics of the Electric Grid

March 13*:
Probability for People and Places

April 10*:
Social and Biological Networks

May 8*:
Mathematics of Redistricting

June 12*: Number Theory: The 
Riemann Hypothesis

July 10*: Topology

August 14*: Algorithms for Threat 
Detection

September 11*: Mathematical Analysis

October 9: Combinatorics

November 13:
Why Machine Learning Works

December 11:
Mathematics of Epidemics

MATHEMATICAL FRONTIERS
2018 Monthly Webinar Series, 2-3pm ET

52

* Recording posted

Made possible by support for BMSA from the 
National Science Foundation Division of Mathematical Sciences and the 

Department of Energy Advanced Scientific Computing Research


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	What is Combinatorics?
	Applications
	Examples
	  Example 1: Stable Matching
	Stable Matching: How does it work?
	Stable Matching: How does it work?
	Slide Number 11
	Slide Number 12
	Key Questions
	  Stable Match Algorithm
	  Stable Match Algorithm
	  Stable Match Algorithm
	  Stable Match Algorithm
	  Stable Match Algorithm
	  Stable Match Algorithm
	  Success of the Match Program
	  Example 2: Tanglegrams
	  Counting Tanglegrams
	  Counting Tanglegrams
	  Counting Tanglegrams
	  Typical Tanglegrams
	Reprise
	Resources and Acknowledgements�
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

