THERAPEUTIC DEVELOPMENT FOR OPIOID USE DISORDER & OVERDOSE PREVENTION AND REVERSAL

EXTENDED RELEASE FORMULATIONS FOR OPIOID USE DISORDER: A CASE STUDY

Christian Heidbreder, Ph.D. Chief Scientific Officer, Indivior Inc.

TODAY'S PRESENTATION

PART I: IMPROVING CURRENT TREATMENT OPTIONS FOR OPIOID USE DISORDER

PART II: LESSONS LEARNED

PART III: FROM TRANSLATIONAL MEDICINE TO CLINICAL EFFICACY & SAFETY

PART IV: ACCELERATING THE DEVELOPMENT OF NEW TREATMENT OPTIONS FOR OUD: PUBLIC/INDUSTRY PARTNERSHIP

Part I: Improving Current Treatment Options for Opioid Use Disorder

1 LANDSCAPE OF CURRENT MAT VS. NEW OPPORTUNITIES

Current MAT Options	Objectives of extended-release (ER) formulations of buprenorphine
Require daily medication adherence	 Monthly or longer dosing interval to remove burden of daily adherence
Potential sub-therapeutic buprenorphine level at end of dosing interval & occasional need for supplemental dosing	 Deliver therapeutic buprenorphine level and effective opioid blockade from first dose Control of withdrawal symptoms and craving
Potential diversion, misuse, abuse and accidental exposure	 Restricted distribution scheme Administered by health care professional

2 DEVELOPING EXTENDED-RELEASE BUPRENORPHINE: OUR EXPERIENCE WITH ATRIGEL® DRUG DELIVERY PLATFORM

- ✓ Used in 7 other FDA-approved drug products
- Biodegradable depot of buprenorphine
- ✓ Prefilled syringe, administered subcutaneously

3 DEVELOPING EXTENDED-RELEASE BUPRENORPHINE: RELEASE PROFILE CONCEPT

Balance of diffusion and polymer degradation needed to obtain desired release rate and pharmacokinetics

4 DESIGNING & PLANNING A DRUG DEVELOPMENT PLAN: A CASE STUDY WITH RBP-6000

Pre-IND submission: Dec 18th, 2009

2009

2017

- Pre-IND meeting with FDA: Apr 27th, 2010
- IND submission: Sep 17th, 2010
- **Type C meeting**: May 14th, 2013
- End-of-Phase II meeting: Sep 30th, 2014
- Pre-NDA meeting: Dec 15th, 2016
- NDA submission: May 30th, 2017
- NDA filing and PDUFA Priority Review Designation by FDA: Jul 29th, 2017
- Advisory Committee: Oct 31st, 2017
- **PDUFA date**: Nov 30th, 2017

- First-in-Man study (20 mg)
- Single Ascending Dose (SAD) study (50, 100, 200 mg)
- Multiple Ascending Dose (MAD) study (50, 100, 200, 300 mg)
- Opioid blockade study
- Phase III double-blind placebocontrolled study
- Phase III open label long-term safety extension study

PART II: LESSONS LEARNED

Δ AT LEAST 70% BRAIN μ-OPIOID RECEPTOR OCCUPANCY (μORO) BY BUPRENORPHINE IS REQUIRED FOR OPIOID BLOCKADE

Adapted from: Greenwald MK et al. (2003) Neuropsychopharmacology 28: 2000-2009.

- At least 70% brain μ -opioid receptor (μ OR) occupancy by buprenorphine is required to block the subjective drugliking effect (opioid blockade) of full agonist-induced responses.
- An analysis of brain µOR occupancy and buprenorphine plasma concentration demonstrated that opioid blockade requires buprenorphine plasma concentrations of ≥2 ng/mL

2 PHARMACODYNAMIC ACTION OF BUPRENORPHINE DECREASES WITH A DECREASE IN PLASMA CONCENTRATIONS & μORO

Adapted from: Greenwald MK et al. (2007) Biological Psychiatry 61: 101-110.

Pharmacodynamic action (*estimated by abstinence, suppression of withdrawal and craving, and blockade of the effects of an opioid agonist such as hydromorphone*) of acute sublingual (SL) buprenorphine decreases over time and is highly correlated with plasma concentrations of buprenorphine (≥ 2 ng/mL) and µOR occupancy (> 70%).

3 BUPRENORPHINE PLASMA LEVEL $\ge 2NG/ML$ ($\ge 70\% \mu OR$) IS THE MINIMUM THRESHOLD TO ACHIEVE BLOCKADE OF DRUG LIKING

NAS October 11th 2017 - Proprietary to INDIVIOR - RBP-6000 is an investigational product that has not been approved by the U.S. FDA or any other health authority

PART III: TRANSLATING OPIOID BLOCKADE DATA INTO CLINICAL EFFICACY & SAFETY

DESIGNING A PHASE III CLINICAL TRIAL (RB-US-13-0001) TO (1)**ADDRESS EFFICACY & SAFETY**

Treatment Period:

- 6 double-blind subcutaneous injections
- Weekly urine drug screens and self-reports ۰
- Weekly individualized counseling (IDC)

Primary endpoint:

The CDF (Cumulative Distribution Function) of the % of urine samples negative for opioids combined with self-reports negative for illicit opioid use collected from Week 5 through Week 24. Urine drug screen (UDS) and self-reports collected weekly

Key Secondary Endpoint:

Treatment success, defined as any subject with ≥80% of urine samples negative for opioids combined with selfreports negative for illicit opioid use between Week 5-24. Missing UDS or self-report considered positive for opioids

DEMONSTRATING CLINICAL EFFICACY: PRIMARY & SECONDARY ENDPOINTS (WEEKS 5 - 24)

	RBP-6000 300mg/100mg	RBP-6000 300mg/300mg	Placebo
% Abstinent Weeks			
Mean (SD)	42.7% (38.50%)	41.3% (39.66%)	5.0% (16.98%)
p-value	< 0.0001	< 0.0001	-
≥ 80% Abstinent Weeks (Responder)			
Treatment Success	28.4%	29.1%	2.0%
p-value	< 0.0001	< 0.0001	-

47% of patients on 300 mg/300 mg dosing regimen were drug free in the last 4 weeks of the 6-month study

Secondary Endpoint	LS Mean Difference vs Placebo (95% Cl)	p-value			
Opioid Craving VAS (0 – 100 mm scale)					
300/300 mg vs placebo	-12.4 (-17.5, -7.3)	< 0.0001			
300/100 mg vs placebo	-9.4 (-14.6, -4.3)	0.0003			
COWS (0 – 48 scale)					
300/300 mg vs placebo	-1.0 (-1.7, -0.2)	0.010			
300/100 mg vs placebo	-0.4 (-1.1, 0.4)	0.31			
SOWS (0 – 64 scale)					
300/300 mg vs placebo	-2.6 (-4.3, -0.9)	0.003			
300/100 mg vs placebo	-1.6 (-3.3, 0.1)	0.072			
		stl.			

* Predicted whole brain μ -Opioid Receptor Occupancy corresponding to C_{avg}

Occurrence (%)	Placebo + IDC (n=100)	RBP-6000 300/100 mg + IDC (n=203)	RBP-6000 300/300 mg + IDC (n=201)
Any TEAE	56.0	76.4	66.7
Serious TEAE	5.0	2.0	3.5
TEAE leading to discontinuation	2.0	3.4	5.0
Any injection site TEAE	9.0	13.8	18.9
Serious injection site TEAE	0	0	0
Injection site TEAE leading to discontinuation	0	0	0.5

- 1048 total exposures
- 848 exposures in Phase 3 with up to 12 monthly doses
- Safety profile consistent with transmucosal buprenorphinecontaining products with exception of anticipated injection site reactions
- Injection site reactions generally mild to moderate and selflimiting, and led to treatment discontinuation in < 1%

ACCELERATING THE DEVELOPMENT OF NEW TREATMENT OPTIONS FOR OUD: PUBLIC/INDUSTRY PARTNERSHIP

1 AREAS OF FOCUS: PUBLIC/INDUSTRY PARTNERSHIP

- ER buprenorphine formulation to prevent opioid overdose?
- ER buprenorphine formulation in patient sub-populations?
- Impact of ER buprenorphine formulation on patient outcomes?
 - ✓ improvement in health status and health-related quality of life
 - ✓ medication satisfaction
 - ✓ decreased health care resource utilization
 - ✓ improvement in employment status and health insurance
 - \checkmark decreases in comorbid drug use and psychiatric associations
- Craving research?

2 AREAS OF FOCUS: PUBLIC/INDUSTRY PARTNERSHIP

Biomarkers for patient stratification and as endpoints for clinical trials?

- ✓ Clinical phenotyping and identification of common genetic variants
- ✓ Small clinical trials of homogeneous populations to establish PoC

DMPK/DDI?

- ✓ Demonstrate early that therapeutic levels of a drug can be reliably delivered to the brain
- Demonstrate that, at those levels, the drug binds its target and modifies the disease pathway in the desired directions
- "Combinatorial" approaches to treatments?
 - ✓ E.g., combination of drugs, behavioral therapies and psychotherapies, or devices

3 AREAS OF FOCUS: PUBLIC/INDUSTRY PARTNERSHIP

Reliability and reproducibility of published data?

- ✓ Preclinical studies to have rigorous standards, similar to clinical trials, ensuring sound research design and credible statistical analyses for successful translational medicine.
- Overrepresentation of positive data in the published literature and corresponding underrepresentation of negative data.

Data sharing?

✓ Success cannot be achieved independently.

✓ Fight high-risk target aversion.

Collaborations and cross-training with disciplines outside the neurosciences?

✓ E.g., engineering, chemistry, physics, and mathematics.

THANK YOU

