Rapid diagnostics and antibiotic stewardship

Ritu Banerjee, MD, Ph.D

Vanderbilt University Medical Center

Sepsis

What antibiotic should I prescribe?

Conventional bacterial blood cultures and AST

- Standard methods are SLOW
- Results take >2 days AFTER positive culture
- Empiric antibiotics before pathogen ID/susceptibility

Observational Studies:

Test	ASP	Decrease TOT*	Mortality benefit	∆LOS (days)	Cost savings	Study
PNA FISH	Y	Y	Y	Ν	-	Forrest 2008
Xpert MRSA	Y	Y	Y	-6.2	21K	Bauer, 2010
MALDI-TOF	Y	Y	Y	-1.8	19K	Perez, 2013
MALDI-TOF	Y	Y	Y	-2.8	-	Huang, 2013
Verigene GP	Y	Y	Ν	-21.7	60K	Sango, 2013
mecA PCR	Y	Y	-	-3	-	Nguyen, 2010
PNA FISH	Ν	Ν	-	Ν	-	Holtzman, 2011
Verigene	Ν	Y	Y	-	Y	Suzuki, 2015
BCID	Υ	Y	-	-	-	Messacar, 2016
MALDI-TOF	Y	Y	Ν	Ν	-	Malcolmson, 2016
BCID	Y	Ν	Ν	Ν	-	Tseng, 2018
Accelerate Pheno	Y	Y	-	-	-	Robinson, 2021
Metaanalysis (31 studies)	Y/N	Y	Y (ASP only)	Y	-	Timbrook, 2017

TOT, time to optimal therapy

Clinical impact of rapid blood culture diagnostics: RCTs

Test	Org.	SS	ASP	Decreased TOT*	Mortality benefit	∆LOS (days)	Cost savings	Study
1. Same day Microscan	All	573	Ν	Y	Y	Ν	Y	Doern, 1994, US
2. Multiplex PCR	All	250	Ν	Y	Ν	Ν	-	Beuving, 2015, Netherlands
3. BCID	All	617	Y	Y	Ν	Ν	Ν	Banerjee, 2015, US
4. MALDI-TOF	All	425	Y	Y	Ν	Ν	-	Ostoff,2017, Switzerland
5. Accelerate Pheno	GN	448	Y	Y	Ν	Ν	Ν	Banerjee, 2020, US
6. MALDI-TOF	All	3127	Y	Ν	Ν	Ν	Ν	MacGowan 2020, England and Wales
7. QMAC-dRAST	All	89	Y	Y	Ν	Ν	Ν	Kim, 2021, Korea
8. Accelerate Pheno	GN	205	Y	Y	Ν	-2	-	Christensen, 2022, US

<u>Blood Culture IDentification (BCID) trial</u> Single center, prospective RCT

Comparison of median time to identification, susceptibility results, and time to antibiotic modifications

Among subset of patients with organisms on BCID panel (n=481) *significant vs. control *significant vs. control and BCID

Banerjee et al, (2015) CID 61: 1071

BCID

Antibacterial Resistance Leadership Group

Clinical Outcomes

Outcome	Control	BCID	BCID +	Р —
	(n= 207)	(n=198)	Stewardship	value
			(n=212)	
Length of stay (days)	8 (5,15)	8 (5,15)	8 (5,16)	0.60
ICU within 14 days	16 (7.7%)	5 (2.5%)	10 (4.7%)	0.06
30-day mortality	22 (10.6%)	20 (10.1%)	18 (8.5%)	0.74
30-day readmission ¹	6 (2.9%)	6 (3%)	8 (3.8%)	0.88
Toxicity/ adverse drug rxn	3 (1.4%)	3 (1.5%)	2 (0.9%)	0.82
Blood cx clearance in 3d	147 (71%)	131 (66%)	146 (69%)	0.79
<i>C. difficile</i> / MDRO ² in 30d	15 (7.2%)	16 (8.1%)	21 (9.9%)	0.62
Overall costs ³	\$65,450 (\$27,192)	\$66,887 (\$23,935)	\$68,729 (\$29,064)	0.78

¹ with same organism; ²VRE, MRSA, ESBLs, Gram-negatives resistant to \geq 3 drug classes; ³Mean (median) among inpatients with available data (n= 544)

Banerjee et al, (2015) CID 61: 1071

RAPIDS GN Trial

Prospective Randomized Controlled Trial

AS, antimicrobial stewardship; ID, identification; AST, antimicrobial susceptibility testing

RAPIDS GN trial

Time to Gram neg antibiotic change

Resistant Organisms: Time to abx escalation

Lessons learned from blood culture trials

- Rapid blood culture diagnostics implemented with stewardship can optimize treatment of bloodstream infections
 - Faster antibiotic modifications
 - More judicious antibiotic use

Context and study design are important

- Local resistance rates, antibiotic prescribing patterns, patient populations, availability of ASPs, lab practices
- Clinical benefits seen in observational studies were not replicated in RCTs
- Endpoints

Selection of endpoints for clinical utility studies

- Laboratory
 - TAT for organism ID and AST result
 - Workflow efficiencies
- Infection control
 - Time to isolation
 - Turnover of isolation rooms
- Antibiotic stewardship
 - Broad vs. narrow spectrum abx
 - Abx escalation/de-escalation
 - Time to effective treatment
 - # stewardship recs and % accepted

- Mortality
- LOS
- Readmissions
- MDRO acquisition
- Adverse Events
- Cost/cost avoidance
- Population-level impact on AMR

ID diagnostics: unmet needs

- Direct from specimens (pathogen and resistance)
- Faster methods, POC
- Rule in or out bacterial infection
- Distinguish colonization vs. infection