# Nuclear waste from small modular reactors

Lindsay Krall, Ph.D.

October 15, 2021

MacArthur Foundation



WASHINGTON, DC



Center for International Security and Cooperation Freeman Spogli Institute

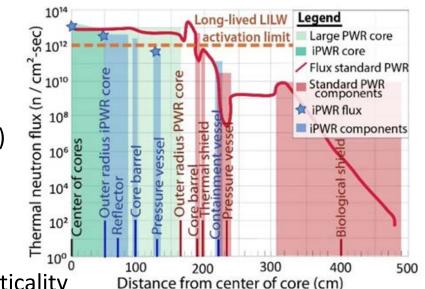
## Small modular reactors (SMRs)

- Advanced reactors as SMRs
- $\circ$  SMRs <300 MW<sub>el</sub> (~1000 MW<sub>th</sub>)
  - Capital investment ("economy of multiples")
  - Safety & proliferation
  - Waste



- o Mass & radiotoxicity vs. composition: (geo)chemistry, re-criticality, heat
- SNF/HLW, long- & short-lived LILW
  - 3400 MW<sub>th</sub> PWR
  - 160 MW<sub>th</sub> NuScale iPWR
  - 400 MW<sub>th</sub> Terrestrial IMSR
  - 30 MW<sub>th</sub> Toshiba 4S

## SMRs enhance neutron leakage


- Reactor power depends on neutron flux (Φ) and,
   in turn, the effective multiplication factor (k)
- Probability of leakage ( $P_L = 1 P_{NL}$ ) depends on reactor radius & neutron diffusion length

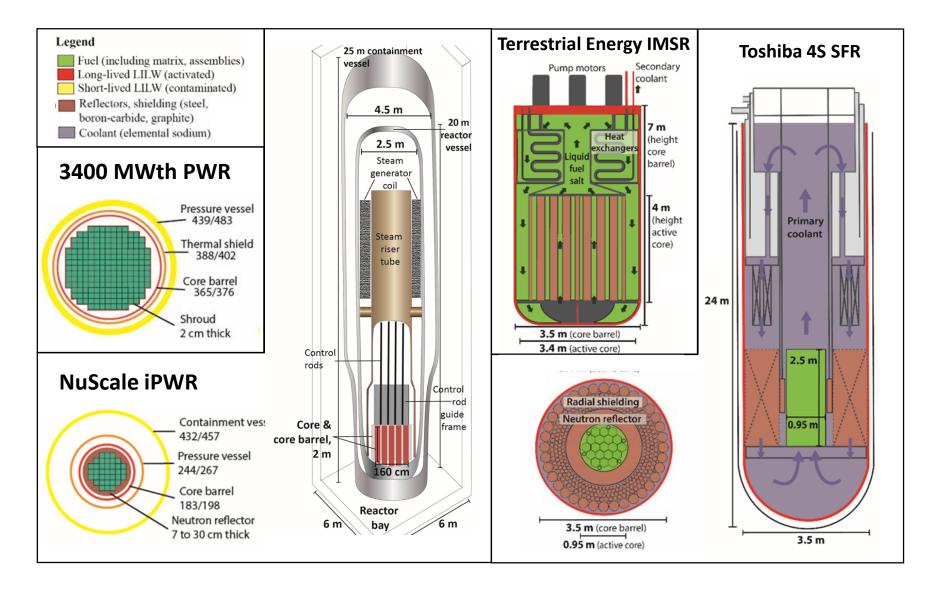
• Reduces fuel burnup, incentives<sup>1,2</sup>:

- Initial enrichment >5 wt% <sup>235</sup>U
- Neutron reflectors
- Non-water moderator (*e.g.* graphite)
- o Implications for:
  - Spent fuel composition
    - $\rightarrow$  <sup>239</sup>Pu purity & proliferation<sup>1</sup>;
    - $\rightarrow$  Decay heat, radiochemistry, criticality
  - Activated & contaminated LILW (reflectors, moderator, coolant)



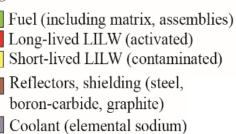


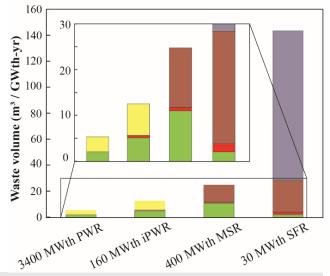



<sup>1</sup>Glaser, A. (2013). *Nuclear Technology* <sup>2</sup>Brown & Todowsow (2017). *Annals of Nuclear Energy* 

# Design overview (1)

 Vessel and component lifetimes limited by corrosion (molten salt), radiation damage (graphite, fast neutrons)


| Reactor type                     | MW <sub>th</sub> | Enrichment<br>(%) | burnup<br>(MWd/kg) | Vessel<br>lifetime (yr) | Moderator | Coolant                           | Reflector                      | Shield            |
|----------------------------------|------------------|-------------------|--------------------|-------------------------|-----------|-----------------------------------|--------------------------------|-------------------|
| AP1000<br>(Westinghouse)         | 3400             | 4.8               | 60                 | 60                      | water     | water                             | water                          |                   |
| iPWR (NuScale)                   | 160              | 5                 | 34                 | 60                      | water     | water                             | steel                          |                   |
| IMSR-400<br>(Terrestrial Energy) | 400              | 3                 | 14                 | 7                       | graphite  | NaF, BeF <sub>2</sub> ,<br>or LiF | graphite?                      |                   |
| 4S-30 (Toshiba)                  | 30               | 19                | 34                 | 60                      | n/a       | sodium                            | stainless steel                | boron-<br>carbide |
| 4S-135 (Toshiba)                 | 135              | 18                | 90                 | 60                      | n/a       | sodium                            | stainless steel                | boron-<br>carbide |
| Oklo (Oklo Inc.)                 | 4                | 20                | < 10               | 20                      | n/a       | sodium                            | zirconium +<br>stainless steel | boron-<br>carbide |
| BN1200<br>(JSC/OKBM)             | 2800             | 13                | 112                | 60                      | n/a       | sodium                            | beryllium                      | boron             |


## ...design overview (2)

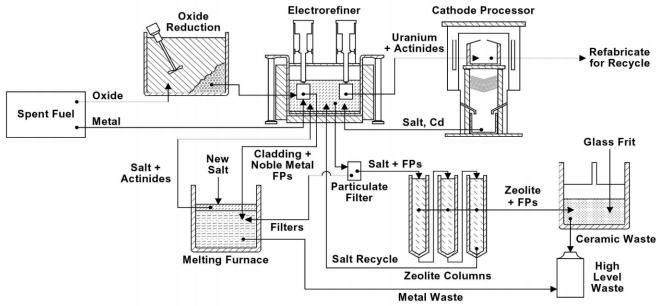


# Waste types








#### Packaged waste volumes will be larger

| Material                     | Nuclides*                                                                                                                                                                                                                                                                        | Management                                                                   | Disposal                              |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|
| Spent fuel                   | <sup>59</sup> Ni, <sup>129</sup> I, <sup>79</sup> Se, <sup>36</sup> Cl, <sup>14</sup> C, <sup>226</sup> Ra (dose)<br><sup>137m</sup> Ba, <sup>90</sup> Y; <sup>241</sup> Am, <sup>238</sup> Pu (heat)<br><sup>235</sup> U, <sup>239</sup> Pu, <sup>241</sup> Pu (re-criticality) | Shielding, storage;<br>treatment & conditioning<br>of sodium-bonded SFR fuel | Deep repository,<br>multiple barriers |
| Activated steel              | <ul> <li><sup>54</sup>Mn (0.85), <sup>55</sup>Fe (2.7), <sup>60</sup>Co (5.3)</li> <li><sup>93</sup>Mo (4.0e3), <sup>14</sup>C (5.7e3), <sup>94</sup>Nb (2.0e4),</li> <li><sup>59</sup>Ni (7.6e4), <sup>99</sup>Tc (2.1e5), <sup>36</sup>Cl (3.0e5)</li> </ul>                   | SAFSTOR or shielding                                                         | Deep repository<br>(cementitious)     |
| Contaminated steel, concrete | Most of the above                                                                                                                                                                                                                                                                | Decontaminate (water)                                                        | Shallow burial                        |
| Molten salt                  | <ul> <li><sup>18</sup>F (2.1e-4), <sup>24</sup>Na (1.5e-3), <sup>51</sup>Cr (7.7e-2),</li> <li><sup>59</sup>Fe (0.12), <sup>58</sup>Co (0.19), <sup>22</sup>Na (2.6), <sup>55</sup>Fe (2.7), <sup>60</sup>Co (5.3), <sup>3</sup>H (12), <sup>14</sup>C (5.7e3)</li> </ul>        | Mitigate <b>corrosion</b> ; convert to stable form ( <i>e.g.</i> CaF)        | Deep repository,<br>multiple barriers |
| Sodium                       | <sup>24</sup> Na (1.5e-3), <sup>22</sup> Na (2.6)<br><sup>134</sup> Cs (2.4), <sup>137</sup> Cs (30), & <sup>60</sup> Co (5.3)                                                                                                                                                   | Deactivate ( <b>inert</b><br>atmosphere)                                     | Shallow burial of<br>NaOH?            |
| Graphite                     | <sup>3</sup> H (12), <sup>14</sup> C (5.7e3), <sup>36</sup> Cl (3.0e5)                                                                                                                                                                                                           | Thermal treatment?                                                           | Deep repository                       |

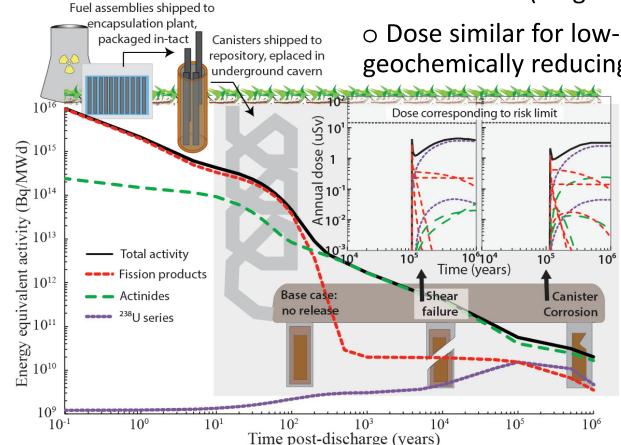
## Treatment of non-UO<sub>2</sub> fuels

Pyroprocessing or electrometallurgical treatment (below)

- $\circ$  Fluoride volatility processing (UF<sub>4</sub>  $\rightarrow$  UF<sub>6</sub>)
- o Dual use technologies (proliferation)
- o Additional waste streams (neglected from estimates)
- $\odot$  Followed by conditioning into stable waste form

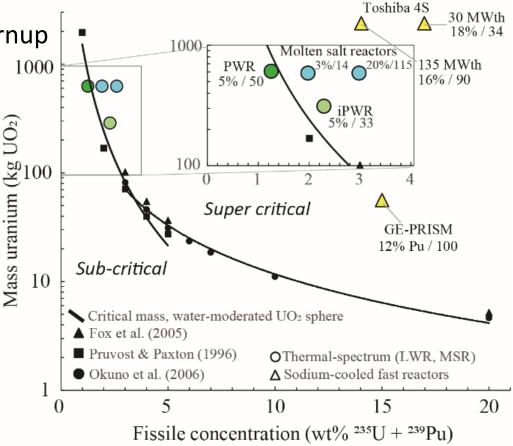


## Storage, transportation, packaging & disposal


Heat (storage duration, repository size): short-lived fission products
 Long-term radiotoxicity (<sup>239</sup>Pu & <sup>240</sup>Pu) versus dose (long-lived FPs, <sup>238</sup>U daughters)

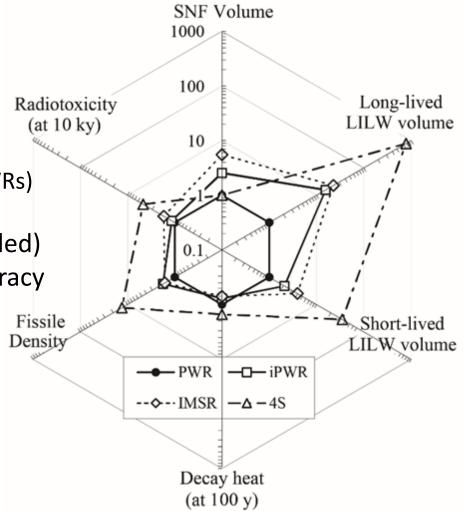
 Dose similar for low- & high-burnup fuels in geochemically reducing disposal environment

o Except for Yucca Mtn


- Oxidizing geochemistry
- Actinide mobility
- Low burnup SMR fuel higher doses

Modified after Hedin (1997)




## **Re-criticality safety**

- Neutron leakage & lower burnup  $\rightarrow$  <sup>235</sup>U excess 1000
- o Water ingress (moderator)
- Fissile concentration, package geometry
- PWR limit: 5 wt% <sup>235</sup>U, >39
   MWd/kg
- Exponential curve: < 1 fuel assembly / canister
  - Disassembly exposures
  - Large number of canisters



## Conclusions

- o SCALE/ORIGEN (Origami)
  - For common reactors (e.g. LWRs)
  - Thermal-spectrum IMSR
- Literature data for 4S (<sup>239</sup>Pu-fueled)
- Need more data for better accuracy
- No benefit to SMR backend
  - Low burnup fuel
  - LILW volumes (moderator, reflectors, shielding)
  - Waste chemistry
  - Neutron leakage (broad applicability)
- Treatment, transportation, storage?

