VentriGel Case Study: A myocardial ECM hydrogel for treating ischemic cardiomyopathy Karen L. Christman, PhD, FAHA **Department of Bioengineering** Sanford Consortium for Regenerative Medicine, UC San Diego

Disclosure: Co-Founder, consultant, and board member of Ventrix, Inc.

VentriGel

Porcine Heart

Liquid matrix

Decellularized cardiac ECM

Lyophilized, milled ECM

In vivo self-assembly

Singelyn, DeQuach et al, Biomaterials 2009

VentriGel Improves Cardiac Function Post-MI

- Improved global and regional cardiac function in porcine MI model
- Decreased left ventricular end-systolic and end-diastolic volumes
- Complex mechanism of action
- Increased cardiac muscle and reduce fibrosis

Seif-Naraghi et al, Science Translational Medicine, 2013; Singelyn et al, JACC 2012; Wassenaar et al, JACC, 2016

Phase 1: Study Design

	Title:	CV-201 - A Study of VentriGel in Early and Late Post-myocardial Infarction Patients						
	Subjects:	15 subjects (all treated)						
	Patients:	Index MI 60 days to 3 years prior and treated with PCI						
		25% <ef<45% (by="" and="" cmr)<="" echo="" td=""></ef<45%>						
	Delivery: catheter	Catheter, transendocardial delivery via NOGA/Myostar						
	Assessments:	At baseline, 3 and 6 months						
		Cardiac MR, 6MWT, NYHA Functional classification, MLWHFQ, BNP						
	Duration:	12 months with visits at baseline, 1, 2, 4, 12 and 24 weeks Phone call at 12 months						
	Safety:	Adverse events, SAEs, clinical chemistries, vital signs TTEM, Holter monitoring, 12-lead ECG						
•	Efficacy:	Change from baseline: EF, ESV, EDV, infarct size, viable tissue, perfusion, BNP, 6MWT, MLWHFQ						
U	Clinical Frais.gov Identifier: NC102305602							

Digested Porcine Extracellular Matrix 36 mg Derived from Porcine Hearts For intracatheter intra

Phase 1 Results

15 patients treated with VentriGel

Primary Endpoint: Safety:

VentriGel has been well-tolerated

Secondary Endpoints:

Encouraging efficacy signals

- Statistically significant improvements in 6 min walk test
- Symptoms score trending toward improvement
- 10 out of 14 improved in ESV or EDV on cMR

meters

6 months

Change NYHA

Early vs. Late MI Patients

Ventrix CV-201 NYHA Age/ Months Base Row Identifier Gender post-MI 35.5 02/206 65/M 1 1 2 02/203 67/M 35 2 3 02/201 59/M 23 1 4 22 3 02/205 59/M 5 04/403 46/M 20 1 6 07/702 56/M 18 2 7 2 03/301 69/M 14 8 01/104 67/F 11 2 9 06/601 46/F 11 2 10 04/404 62/M 8.5 3 11 02/207 62/M 7 1 12 03/304 45/M 2 6 2 01/103 13 69/F 4 2 14 04/401 51/F 4 2 15 04/402 63/M 3

pre 12 mo Change LVESV

post 12 mo Change LVEDV

Disease Severity

Overall improvements at 6 months evident for the whole population

Particularly strong in the 180-300 mL range of LVEDV at Baseline

Population	EDV	ESV	6MWT	NYHA	MLWHFQ	BNP	Scar	Viable	Scar%
All	+	0	+	+	+	-	-	+	-
LVEDV<180	0	-	+	+	-	-	+	+	+
LVEDV 180-300	+	+	+	+	+	+	0	+	+
LVEDV>300	-	-	+	+	+	-	-	-	-

Legend

improved (i.e. decreased in: EDV, ESV, NYHA, MLWHFQ, BNP; increased: 6MWT)

0 no change

worsened (i.e. Increased in: EDV, ESV, NYHA, MLWHFQ, BNP; decreased: 6MWT;

Challenges on Regulatory Approval Pathway

Complex Mechanism of Action

↓ cell death

- ↓ hypertrophy
- ↑ immunomodulatory response
- ↑ metabolic processes
- blood vessel development
- ↑ heart development

Wassenaar et al, JACC, 2016

Challenges on Regulatory Approval Pathway

- Need activity assay for Phase III and approval
 - How does one adequately show bioactivity with a simple in vitro assay when there is a complex mechanism of action?
 - Variability with regenerative medicine products
 - Variability with cells in culture
 - No direct link to activity *in vivo*
- Difficult to develop antibody assays for complex products
- Given good safety profiles, more leeway is needed on approvable endpoints
 - Post-market monitoring to better understand efficacy with a large more variable population

Acknowledgements

Christman Lab

Jennifer Singelyn, PhD Jessica DeQuach, PhD Priya Sundaramurthy, MS Sonya Sonnenberg, PhD Jean Wassenaar, PhD Todd Johnson, PhD Roberto Gaetani, PhD Ray Wang Pam Schup-Magoffin Rebecca Braden, MS

Collaborators

Nabil Dib, MD Anthony DeMaria, MD Michael Davis, PhD Joost Sluijter, PhD Pieter Doevendans, MD, PhD Jeff Omens, PhD Kirk Hansen, PhD Yang Xu, PhD Sylvia Evans, PhD

<u>Ventrix</u>

Adam Kinsey, PhD Paul Chamberlin, MD Jessica DeQuach, PhD Brian Farmer Loren Tarmo

Clinical Investigators

Jay Traverse, MD Tim Henry, MD Amit Patel, MD Nabil Dib, MD Carl Pepine, MD Gary Schaer

Funding

