### Variability in the Development of Cellular Therapies:

# A Case Study on Manufacturing CD19- and CD22-CAR T Cells for the Treatment of Acute Lymphocytic Leukemia

**October 18, 2018** 

David Stroncek, MD

Chief, Center for Cellular Engineering, Department of Transfusion Medicine, CC NIH

# **NIH Center for Cellular Engineering**

### **Products Manufactured**

### **Cancer Immunotherapy**

- Dendritic cells
- NK cells
- Cytokine treated monocytes and lymphocytes
- CAR T cells

### **Regenerative Medicine**

- Induced pluripotent stem cells (iPS) cells
- Mesenchymal Stromal Cells (MSCs)

# **Gene Therapy**

- Chronic Granulomatous Disease (CGD)
- Severe Combined Immune Deficiency (SCID)

# **Chimeric Antigen Receptor (CAR) T Cells**



#### **Key Components**

- Antigen-binding (scFv)
- CD3-zeta  $\rightarrow$  Signal 1
- Costimulatory  $\rightarrow$  Signal 2
  - (CD28, CD137 (41BB))

Advantages Over T-Cell Receptor Target Recognition

- Specific for a surface antigen
- Free of MHC restriction
- Signals for full activation are selfcontained



# Composition of Peripheral Blood Mononuclear Cell (PBMC) Concentrates



#### **PBMC** Concentrates

- Lymphocytes
- Monocytes
- Granulocytes
- Natural Killer cells
- Red blood cells
- Platelets

#### **Composition of PBMC Concentrates from**

Healthy subjects (n = 41)

|                  | Mean ± 1SD  | Range    |
|------------------|-------------|----------|
| Lymphocyte (%)   | 68.4 ± 9.8  | 42 to 83 |
| Monocytes (%)    | 18.8 ± 6.1  | 1 to 32  |
| Granulocytes (%) | 9.54 ± 10.1 | 0 to 42  |

# **T Cell Isolation and Expansion**



# First 28 CD19-CAR T Cell Products: Transduced T Cell Yield

|                                        | <b>Cells in Final Product</b> |               |
|----------------------------------------|-------------------------------|---------------|
|                                        | Mean ± 1SD                    | Range         |
| T Cells (x10 <sup>6</sup> )            | 1,362 ± 1167                  | 4.61 to 3,800 |
| Transduced T Cells (x10 <sup>6</sup> ) | 1,084 ± 920                   | 2.36 to 2,990 |
| Transduced T Cells (%)                 | 68.3 ± 23.9                   | 18.3 to 96.8  |

#### **Four Products Failed to Meet Dose**

- Patient 2 (3.9 x10<sup>6</sup> transduced T cells)
- Patient 5 (19.4x10<sup>6</sup> transduced T cells)
- Patient 22 (0.0 transduced T cells)
- Patient 26 (2.4x10<sup>6</sup> transduced T cells)



## Comparison of PBMC Concentrates that Resulted High and Low CD19-CAR T Cell Yields

|              | Met Dose<br>Requirements<br>(n=24) | Did Not Meet Dose<br>Requirements<br>(n=4) | р       |
|--------------|------------------------------------|--------------------------------------------|---------|
| Lymphocytes  | 75.3 ± 14.1%                       | 42.3 ± 8.4%                                | 0.00018 |
| Monocytes    | 15.3 ± 10.8%                       | 39.8 ± 12.9%                               | 0.0014  |
| Granulocytes | 6.9 ± 8.6%                         | 16.3 ± 12.2%                               | 0.083   |

Stroncek DF, Ren J, Lee DW et al. Cytotherapy. 2016 Jul;18(7):893-901.

# Mechanism of Myeloid Cell Inhibition of T Cell Expansion

Monocytes and/or granulocytes bind to anti-CD3/CD28 beads and are carried into the T cell culture

- Myeloid cells release factors that inhibit expansion
- Myeloid cells prevent T cell binding to anti-CD3/CD28 beads



# **Better T Cell Isolation**

- Plastic adherence to remove monocytes
- Counter-flow elutriation
- Antibody selection: antibodies and paramagnetic particles



#### Yields of CD19-CAR T Cells Manufactured from PBMC Concentrates Enriched with Anti-CD3/CD28 Beads, Anti-CD3/CD28 Beads plus Adherence, and Elutriation



CD22-CAR T Cell Manufacturing: Enrichment and Elutriation Does Not Always Rescue Expansion

### Anti-CD3/CD28 Enrichment + Adherence



50.

40

30

20

10

0

Fold expansion





N=6 Highfill, Jin and Fellowes

33%

Enriching PBMC Concentrates for T Cells by Antibody Selection

Selection of CD4+ and CD8+ cells using monoclonal antibodies conjugated to magnetic beads

> Miltenyi CliniMACS Plus



# CD22-CAR T Cell Manufacturing Comparisons

15-C-0029; N=35 patients



\*Pre bead enrichment

Elutriated n=6; CD3/CD28 Enriched n=19; CD4/CD8 Selected n=10

#### Effect of T-Cell Selection on Cytokine Release Syndrome Following CD22-CAR T Cell Infusion



### T Cell Selection (TCS) May Enhance In Vivo CAR T Cell Expansion



Courtesy of Dr. Nirali Shah, NCI, POB

#### Dose de-escalation to dose level 1: 3 x 10<sup>5</sup>

- Previously limited efficacy (1/6 attained CR)
- 3 of 3 patients with CAR expansion
  - All 3 patients achieved a complete response (CR)

# **CAR T Cell Manufacturing Summary**

- Variability in leukocyte concentrates collected by apheresis and used as starting material for CAR T cell manufacturing can lead to variability in T cell expansion.
- Changes in the method used for the enrichment of leukocyte concentrates for T cells expansion change CAR T cell potency.

# Acknowledgements

**NIH, Cell Process Section** Minh Tran Sue Ellen Frodigh **Jiaqiang Ren Ping Jin** Hui Liu **Vicki Fellowes Jianjian Jin** Sandhya Panch Hanh Khuu Virginia DavidOcampo Marianna Sabatino **Steven Highfill** 

NCI, Pediatric Oncology Branch Trey Lee Terry Fry Crystal Mackall Nirali Shah

> NCI, ETIB James Kochenderfer

#### DTM

Cathy Cantilena Kamille West Bill Ward Harvey Klein