Approaches to Overcoming Variance Due to Heterogeneity -Case study in a Rare Disease

Susan J. Ward, Ph.D. The TAP Collaboration *and* James Signorovitch, Ph.D. Vice President, The Analysis Group Inc.

> IOM Workshop, Oct 20, 2015

cTAP

The <u>collaborative</u> Trajectory <u>Analysis</u> Program

- 1. Why?
- 2. Hypothesis and Preliminary Results
- 3. From Consortium to Platform?

The Problem (2010-2015)

TRIAL	PHASE	PATIENTS **	Met Primary <u>endpoint</u>	
DEMAND II	Ph 2	53	yes	
DEMAND V	Ph 2	51	no	
DEMAND III	Ph 3*	186	no	
PTC 007	Ph 2*	174	no	
DMD-ACT	Ph 3*	228	no	
Tadalafil	Ph 3*	331	2016	
Pfizer	Ph 2	105	2017	

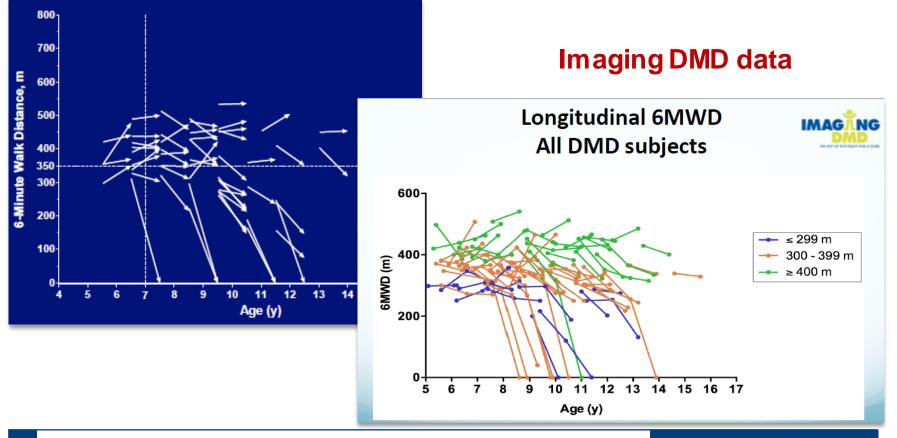
* Pivotal trial

**Total # patients =1719 patients; ~ 400 randomized to placebo

Failed Trial – or Failed Drug?

- Is the drug ineffective?
- Or effective only in a subset of patients?
- Was the study underpowered?

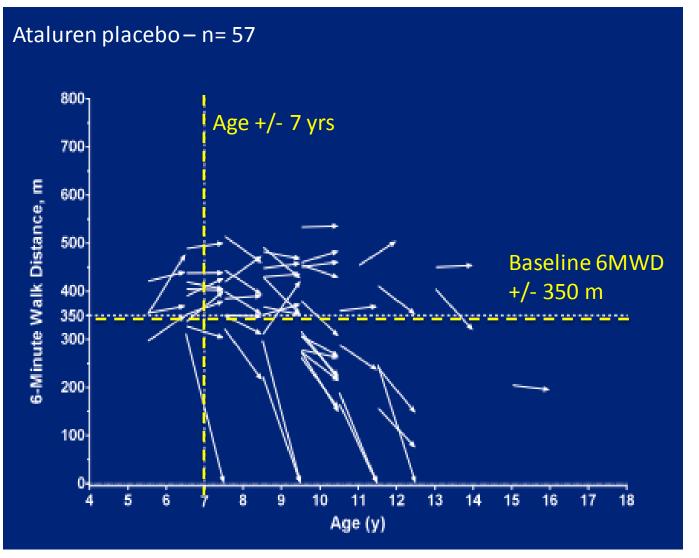
Clue #1 – High unexplained variance


DMD patients lose approximately 40-60 meters in 6MWD per year Summary from Prosensa Investor presentation, 2014							
Study	Design	Δ 6MWT (m)	SD (m)	Study (weeks)	n		
McDonald 2010*	Natural History	-57	104	52	18		
Ataluren 2010*	Placebo arm	-42	90	48	57		
Mazzone 2011**	Natural History	-42	74	52	71		
Goemans 2012*	Natural History	-38	96	52	19		
McDonald 2013**	Natural History	-59	82	48	33		
Drisapersen 2014	Placebo Arm	-53	78	48	61		
Hindsight: noor Signal to noise undernowered							

Hindsight: poor Signal to noise, underpowered

PUBLISHED AFTER TRIALS DESIGNED Phenotypic Heterogeneity – a major source of variance

Ataluren PIIb placebo arm



Approaches to overcoming heterogeneity-driven variance in clinical trials

- Account for known prognostic markers
- Improve consistency in measuring outcomes
- Change outcome measure
- Develop biomarkers
- Run a bigger trial

Rarely an option in rare disease!

Proposed Prognostic Factors

Reduction in variance SD: 90m => 82m

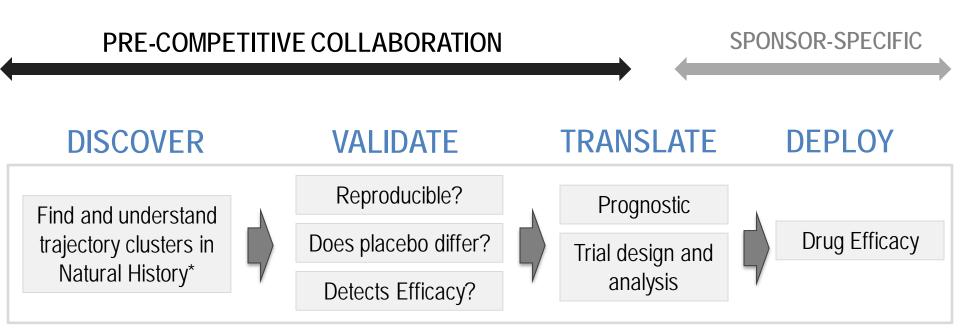
Some, but limited benefit

In 1Q 2014....

- > 5 years clinical development
- > 1000 open port biopsies
- # Drug approvals zero
- Reduction in heterogeneity-based variance ~ 10-15%

What can we learn from other diseases? Other disciplines?

Idea: Focus on the entire longitudinal trajectory


PREMISE

- Each patient has own distinctive longitudinal trajectory of disease progression
- Clinical trials a window into each patient trajectory
- Natural history a composite of trajectories

TESTABLE "HYPOTHESIS"

 Cluster heterogeneous longitudinal trajectories of disease progression => reduce variance

Proposed Collaboration Overview

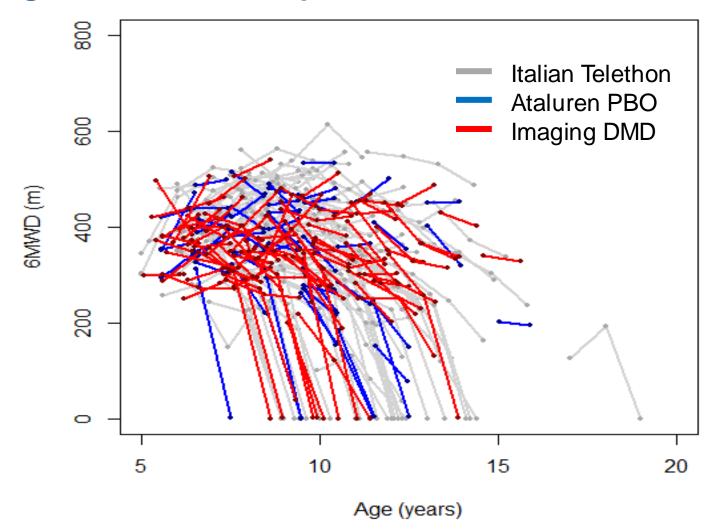
ENGAGE REGULATORS

COMMUNICATE

*Latent Class Trajectory Analysis

10/20/2015

The TAP Collaboration in Duchenne


Latent Class Trajectory Analysis

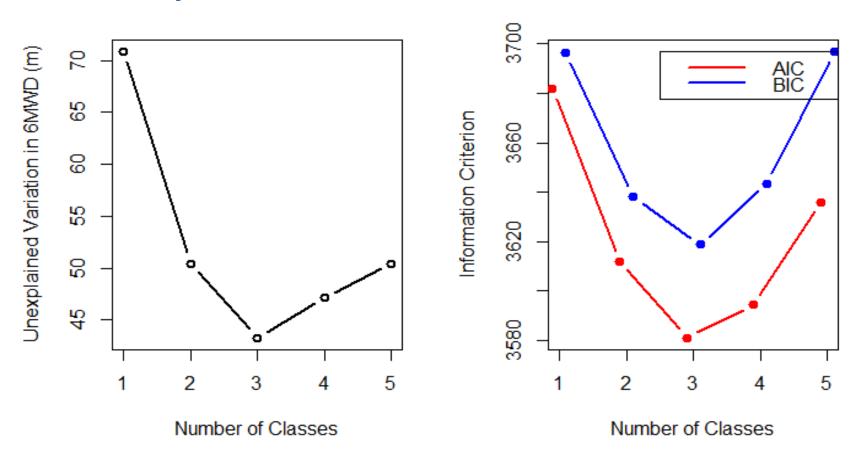
- Methodology developed in social sciences and healthcare economics
- Developed to handle variance due to heterogeneity in longitudinal clusters
- Of Growing interest (Pub Med)

See references

Rough Proof of Concept: data digitally traced from published figures

Latent Class Trajectory analysis Cluster age-based 6MWD trajectories?

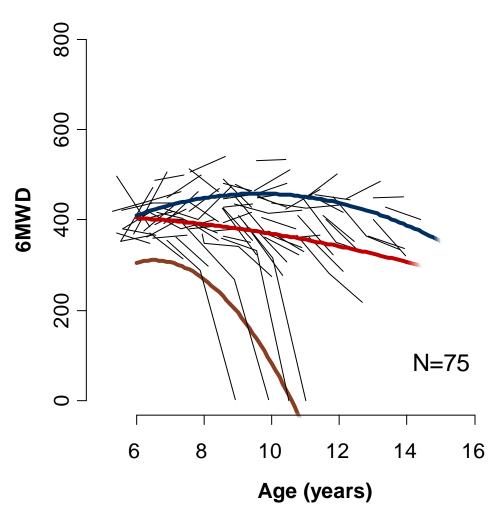
Models for 6MWD trajectories to be compared:


- A. $age + age^2$
- B. age + age² with 2 classes
- C. age + age² with 3 classes
- D. age + age² with 4 classes
- *E.* $age + age^2$ with 5 classes

Which model best explains the data?

TAP Collaboration

How many clusters?



- 3 classes fit better than 1 or 2
- SD for unexplained variation reduced $71m \rightarrow 43m$

TAP Collaboration

Incorporating more data for boys with baseline 6MWD > 350 m

Additional data extracted from Lee Sweeney et al.

Total N = 75

Three clusters vs. two vs. one:

- Improved statistical measures of model fit; three clusters was best
- Three clusters reduced unexplained variance in 6WMD 71m => 43m

Take-aways

- →There are strong signs of trajectory clustering
- →Marked reduction in unaccounted for variance (> 50%)
- →Next: Validation in independent, larger samples

cTAP Access to Patient Data **Progress in Year 1**

- Data Sources
 - 2 multi-center clinical registries
 - 2 large neuromuscular clinical practices
 - US and EU
- >1260 patients
- > 90% with dystrophin genotype
- >5000 patient-years
- >>35,000 data points

But wait – so much patient data beyond 6MWD

- Ambulatory function
 - NorthStar Ambulatory Assessment (NSAA)
 - 21 parameter assessment
- Timed Functional tests
 - Rise from supine
 - 10 mwr
 - 4 SC
- Non-ambulatory function
 - pulmonary
 - cardiac
 - Bone density

- Patient Reported Outcomes
- History of steroid use
 - Drug, regimen
 - Age at GC start, duration
- Dystrophin genotype
- Age, Height, weight, BMI

Will additional parameters improve prognosis?

Prognostic model Preliminary Results Observed vs. predicted annualized change in 6MWD

6MWD (m)

Don't assume traditional methods have been exhausted!

10/20/2015

Multiple pivotal trials failed to meet primary endpoint Impact of reduced variance on power

	Unexplained variation (m)							
Treatment effect (m)	40	50	60	70	80	90	100	
20	96%	84%	69%	56%	45%	37%	31%	
25	100%	96%	87%	75%	64%	54%	45%	
30	100%	99%	96%	89%	79%	69%	60%	

Approximate power in a trial of n=110 treated vs. n=110 controls

10/20/2015

Reduced variance: Translation to Drug Development

Describe, Predict, Simulate

- Inform trial design and analysis
- Enable natural history controls
- Inform biomarker evaluation
- Establish value of endpoints for regulators and payers

Regulatory Science Workshop - Implications

Tension: Impact/Value of markedly greater power vs Regulatory Risk (Guinea-pig(s))

- Any "Non-traditional" statistical approach
- Safe(ish) Zones => Regulated applications
- Leverage beyond Duchenne

cTAP: a collaborative, analytical Platform

Pre-Competitive OBJECTIVE, INDEPENDENT
De-identified patient data SHARE DATA EQUALLY
Analyses, at scale IMPACT- NOW
Financial Resources FLEXIBLE
All stakeholders A FIRST IN DMD

More effective drug development => enable drugs to patients sooner

Approaches to Overcoming Variance Due to Heterogeneity - Case study in a Rare Disease

The TAP Collaboration Susan J. Ward, Ph.D. *and* James Signorovitch, Ph.D. Vice President, The Analysis Group Inc.