

Opportunities to leverage Machine Learning in Oncology

Dave Steiner, MD, PhD Clinical Research Scientist Disclosures: I am an employee of Google and own Alphabet stock.

Machine learning in healthcare

- Methods
- Opportunities and examples
- Shared Vision

Analyticalmethods

Analyticalmethods

Capacity to learn complex relationships

Al and neural networks - why now?

Scale (data size, model size)

Neural networks learn from examples

labeled examples

closer to label for any given example

Supervised Machine Learning requires:

Machine Learning in healthcare also requires:

Input, support, and trust of patients, communities, and providers.

Domain expertise

Potential to perpetuate bias...

System is able to learn, improving at a task with experience ...but it only learns what it sees.

Potential to address bias too...

SPECIAL ARTICLE

Annals of Internal Medicine

Ensuring Fairness in Machine Learning to Advance Health Equity

"Consideration of fairness in machine learning allows us to reexamine historical bias and proactively promote a more equitable future." Correct bias in the data

Ensure proper representation of minority groups in training **and** validation

Correct bias in the model design

Labels should be adjudicated truths (i.e. using the delphi method)

Ensure equal outcomes & resource allocations when using Al

Developing and validating healthcare models

Many unique challenges

- 1. Ground Truth and benchmarks
- 2. Validation and generalizability
- 3. Understanding context
- 4. Integration and actionability
- 5. Transparency understanding and learning from the models

Google Health

150 exabytes of healthcare data

1000x all data we've indexed on the internet

Alresearch and development is a cornerstone of our work

X

20

☆

Google AI Principles: for responsible development

AI should:

- be socially beneficial
- 2 avoid creating or reinforcing unfair bias
- 3 be built and tested for safety
- 4 be accountable to people
- 5 incorporate privacy design principles
- 6 uphold high standards of scientific excellence
- be made available for uses that accord with these principles

applications we will not pursue:

- likely to cause overall harm
- 2 principal purpose to direct
- 3 surveillance violating internationally accepted norms

purpose contravenes international law and human rights

Opportunities in oncology

Democratizing Expertise

Actionable Information

Discovery and Translation

Democratizing Expertise

Access to expert care everywhere

Pathology

Detection can be a needle in a haystack problem

10 gigapixel whole slide images

Combination of pathologist + model more accurate than either alone

Deep learning to identify and grade prostate cancer

Deep Learning System similar to pathologist interpretation

a Grade Group Diagnosis

Nagpal et al. *NPJ Digital Medicine* 2019

Radiology

End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography

Diego Ardila¹⁵, Atilla P. Kiraly¹⁵, Sujeeth Bharadwaj¹⁵, Bokyung Choi^{1,5}, Joshua J. Reicher², Lily Peng¹, Daniel Tse^{51*}, Mozziyar Etemadi³, Wenxing Ye¹, Greg Corrado¹, David P. Naidich⁴ and Shravya Shetty¹

(Nature Medicine 2019)

Initial scan with AI detection

Compared to 6 radiologists, the model had an absolute **reduction** of

- \downarrow **11%**in false positives
- \downarrow **5%** in false negatives

Actionable Information

Elevating public health

2018: Health Impact study

West/Downtown Oakland Study Area Air pollution's Map Satellite health risk study) 12%-26% higher risk 26%-42% higher risk Study boundary

impact on the heart in the elderly (65+) Estimated traffic pollution-related At or below average pollutionrelated risk of heart attack, heart surgery, and/or death due to coronary heart disease (for this Up to 12% higher risk More than 42% higher risk Air pollution data not available

East Oakland Study Area

Health Impacts in Oakland, CA (from dieseltrucks and other sources)

www.edf.org/airqualitymaps/how-pollution-impacts-human-health

Alexeeff et al. Environmental Health 2017

easternhealth

Analyzing records from ambulances to uncover trends and potential points of intervention around suicide

inner.

Discovery and Translation

Understanding health and disease. Translating from code to care. Shared vision: Cooperatively exploring the complex data landscape...

Thank you!