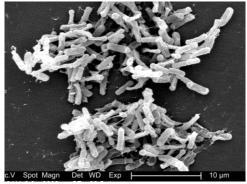
Trials of microbiological control in common marmosets

Takashi Inoue Department of Marmoset Research, Central Institute for Experimental Animals

Microbiological status of common marmosets in laboratory

- Low risk of zoonoses and severe infectious diseases
- Generally, non specific pathogen free (SPF)/non barriered facility
 - Quarantine and check of high-risk zoonotic pathogens in marmosets (*Salmonella, Shigella,* ...) and humans (measles, tuberculosis,...) are conducted.
 - Some facilities use outside enclosure for environmental enrichment (Bakker et al., 2015)
 - A SPF colony has been developed at Barshop Institute for Longevity and Aging Studies (Ross et al., 2017).
 - SPF definition is controversial.
- Some health problems caused by opportunistic pathogens

Pathogens detected in common marmosets in the Central Institute for Experimental Animals (CIEA)


Pathogen		Disease			
Protozoa	Pentatrichomonas hominis	No, Diarrhea? (Inoue et al., 2015)			
	Enteropathogenic <i>Escherichia coli</i> (EPEC)	Diarrhea (bloody) (Hayashimoto et al., 2016)			
	Clostridium difficile	Diarrhea, pseudomembranous colitis			
Bacteria	Clostridium perfringens	Sepsis (Yasuda et al., 2016)			
	Klebsiealla pneumoniae	Sepsis			
	Helicobacter spp.	Unknown			
Viruses	Callitrichine herpesvirus 3 (CalHV-3; lymphocryptvirus)	No, lymphoma?			

Trials of microbiological control in common marmosets

Clostridium difficile infection and Fecal Microbiota Transplantation in common marmosets

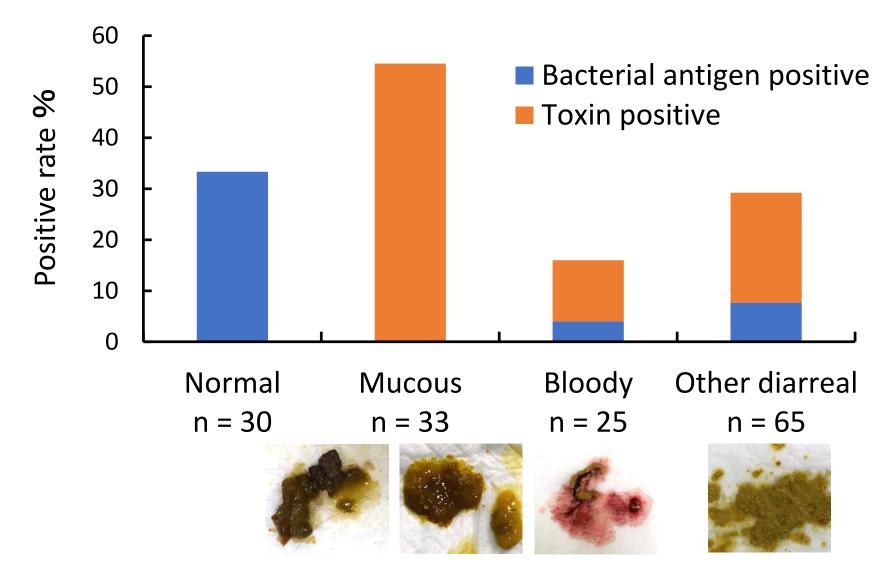
Clostridium difficile

- *Clostridium difficile* is a spore-forming, Grampositive anaerobic bacillus that is naturally found in the intestinal tract of humans and animals, and in the environment.
- It is a common cause of nosocomial and antibiotic-associated diarrhea in humans.

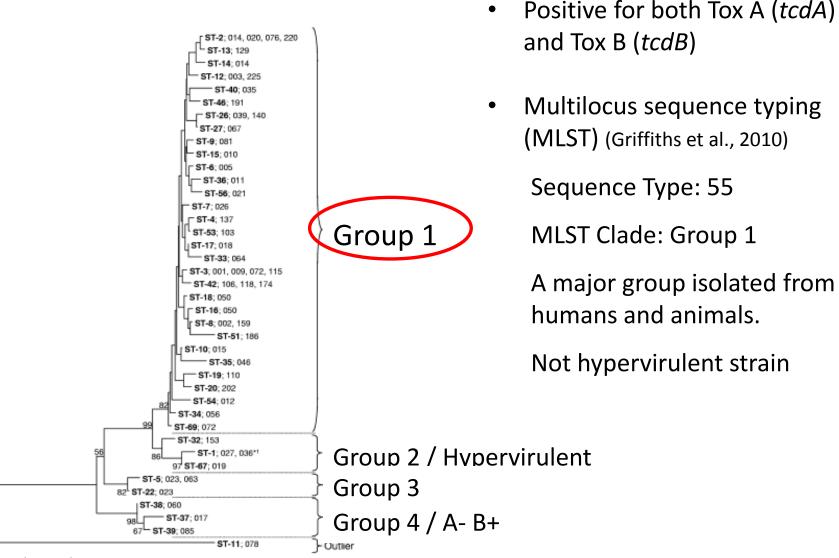
http://phil.cdc.gov

- It proliferates by imbalance of intestinal bacterial flora (dysbiosis), produces toxins, and causes symptoms ranging from mild diarrhea to severe pseudomembranous colitis.
- In New World monkeys, *C. difficile* associated colitis was found in cotton-top tamarins (Rolland et al., 1997).
- Recently, *C. difficile* has been found in some marmoset colonies in Japan (Yamazaki et al., 2017).

A pseudomembranous colitis case of common marmoset

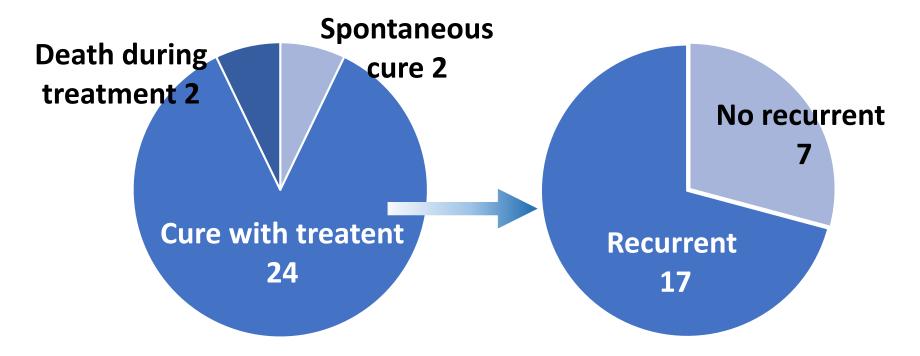

'Pseudomembrane' was formed in mucosa of the enlarged colon.

- Watery diarrhea, anorexia, acute weight loss during antibiotic (nalidixic acid) treatment against EPEC.
- *C. difficile*-toxin positive in rectal feces using a immunochromatographic kit



 The C. DIFF QUIK CHEK COMPLETE[®] (Alere) test is the only rapid cassette assay that simultaneously detects both glutamate dehydrogenase (GDH) antigen and toxins A & B of *C. difficile* in fecal specimens.

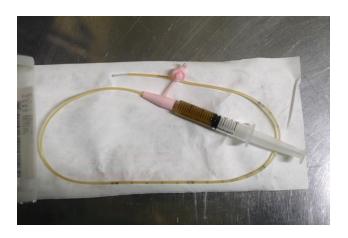
Survey of fecal *C. difficile* toxin in a common marmoset colony using C. diff Quick Check Complete n=153 (1 month to 15 years old)



Genetic typing of *C. difficle* from common marmosets

Antibiotic therapy for *C. difficle* infection in marmosets

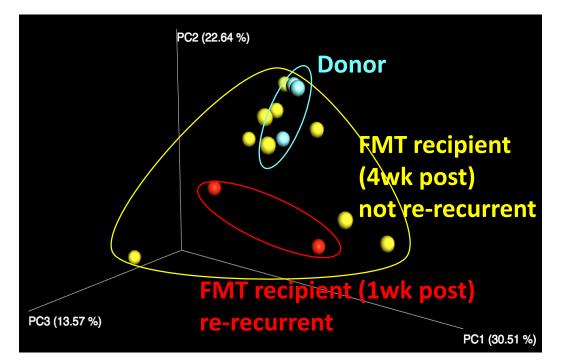
Metronidazole 20 mg/kg/day or **Vancomycin** 30 mg/kg/day for 5-14 days



In treatment cases, other care such as fluid and nutritional support was also done.

A trial of fecal microbiota transplantation (FMT) for recurrent *C. difficile* infection in marmosets

FMT is an effective remedy for recurrent *C. difficile* infection (CDI) in humans. A successful case report was reported also in a marmoset (Yamazaki et al., 2017)



Donor	A healthy individual (3y, female, 468g) Negative for <i>Salmonella, Shigella, Yersinia,</i> EPEC, <i>C. difficile</i>
Recipient	22 recurrent CDI cases (1-15y) Diarrhea and CD toxin positive 2-10 times
Donor feces/FMT	Fresh or frozen (-80°C) Fecal suspensions of a healthy were administered intragastrically to recurrent CDI cases a day after final vancomycin administration.

A trial of fecal microbiota transplantation (FMT) for recurrent *C. difficile* infection in marmosets

Donor feces	No. of cases	No relapse within 12 weeks post FMT				
Fresh	13	11 (77%)				
Frozen	9	7 (78%)				
Total	22	17 (77%)				

PCoA analysis with weighed Unifrac distances of fecal microbiota based on the bacterial 16S rRNA gene dataset.

Clostridium difficile infection and Fecal Microbiota Transplantation in common marmosets

Summary

- *C. difficile* should be noted as one cause of marmoset diarrhea and severe colitis.
- *C. difficile* infection relates with imbalance intestinal microbiota and FMT would be effective for the therapy.
- The emergence of C. difficile infection problem make us remind the importance of microbiological control and intestinal microbiota in marmoset husbandry.

Trials of microbiological control in common marmosets

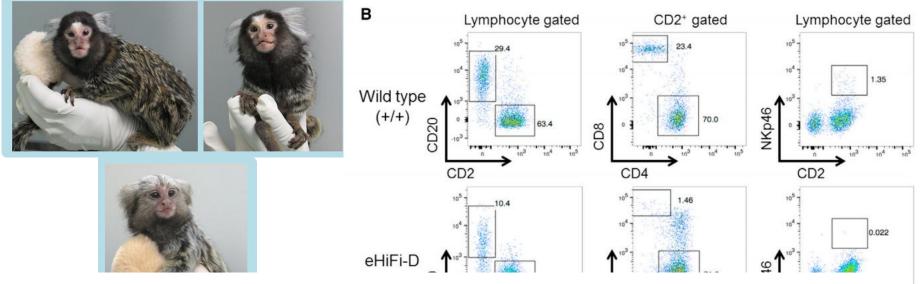
Strict microbiological control for immunodeficient marmosets and germfree marmosets

Strict microbiological control through Caesarean sectiondelivery in marmosets

In the past, a trial of establishment of a SPF marmoset colony was reported (Hobbs et al., 1977) .

*Present address: OLAC (1976) Ltd, Shaw's Farm, Blackthorn, Bicester, OX6 0TP.

Table 1. Summary of breeding records of conventional colony of Callithrix jacchus						
May 1969—January 1973						


Animal	Preg-	Abor	-Res-	Full	Pre	Pregnancy success [†]			Foetuses per pregnancy			Young born	
		tions		term†	all live	live and dead on delivery		3	2		alive	dead	
2	8	3	1	4(1)	2(1)	2	0	1	4	2	6 (3)	2	
4	3	0	1	2	1	1 ¶	0	0	2	0	3	1	
6	4	0	0	4(1)	4(1)	0 "	0	1	3	0	9 (3)	0	
8	4	1	0	3	2	.1	0	1	2	0	6	1	
12*	1	Õ	0	1(1)	0	0	<u>1</u> (1)	0	ļ	0	Õ	2(1)	

Strict microbiological control is needed for special purposes.

Cell Stem Cell Resource

Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing

Kenya Sato,¹ Ryo Oiwa,¹ Wakako Kumita,¹ Rachel Henry,² Tetsushi Sakuma,³ Ryoji Ito,¹ Ryoko Nozu,¹ Takashi Inoue,¹ Ikumi Katano,¹ Kengo Sato,⁴ Norio Okahara,¹ Junko Okahara,¹ Yoshihisa Shimizu,¹ Masafumi Yamamoto,¹ Kisaburo Hanazawa,⁵ Takao Kawakami,⁶ Yoshie Kametani,⁷ Ryuji Suzuki,⁸ Takeshi Takahashi,¹ Edward J. Weinstein,² Takashi Yamamoto,³ Yasubumi Sakakibara,⁴ Sonoko Habu,⁹ Jun-ichi Hata,¹ Hideyuki Okano,^{10,*} and Erika Sasaki^{1,11,*}

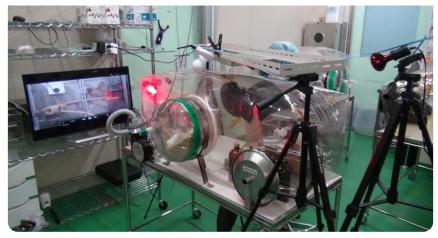
Severe combined immunodeficient (SCID) nonhuman primates (NHPs) would have various applications for advance in biomedical research.

Rearing newborns of immunodeficient marmosets

Hand rearing

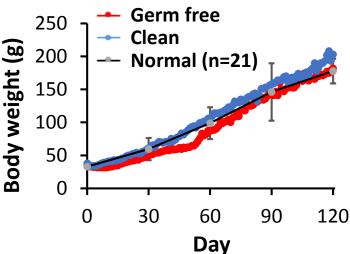
Newborns through Caesarean section-delivery have been reared with hand milk feeding in a clean room using Biobubble®□.

Keeping of immunodeficient marmosets



Cages in biobubble ®

- Immunodeficient marmosets have been kept for 4 years.
- *C. difficile* infection also becomes a health problem despite a barriered environment.
- Metronidazole or vancomycin treatment is helpful but suitable intestinal bacterial flora will improve their health.


Germ-free marmosets for microbiota research

Germfree and gnotobiotic marmosets have a potential for dynamically developing microbiome research.

Isolators for germfree

Growing up of a germ free marmoset

High-level microbiological control for immunodeficient marmosets and germfree marmosets

Summary

- Strict microbiological control through Caesarean section is specially needed for SCID marmosets and germfree marmosets, and that is possible.
- "Good" intestinal bacterial flora is needed to improve health of SCID marmosets.
- Husbandry of these special animals should be improved to succeed in research.

Acknowledgement

Central Institute for Experimental Animals

Erika Sasaki Yoko Kurotaki Ryoko Nozu Masami Ueno Nobuhito Hayashimoto Masahiko Yasuda

Kenya Sato Takayuki Mineshige Terumi Yurimoto Emi Sasaki Lee Chia-Ying Norio Okahara

Prof. Hideyuki Okano

Prof. Kenya Honda

and other all members of marmoset research group

