Marmosets as translational models for aging research

Corinna N. Ross, PhD

BODG SAN ANTONIO

Aging Research

Marmosets

- •NHP models allow control of environment, diet, and medicines
- •Small (350-450 g)
- Rapidly reproducing
- Relatively short lifespan and development
 - Reach adult size ~2 years
 - Average lifespan ~6 years in captive colonies
 - Oldest marmoset ~22 years

Longevity

⁽Ross & Salmon 2018)

(Ross 2018) (Ross et al 2017)

Causes of Death

(Tardif et al, 2011)

Characterizing Marmoset Aging – 5 domains

- Metabolic
- Homeostatic
- Immune
- Mobility
- Cognition

Metabolic Aging

- Lose weight at an increasing rate above middle age (Power et al 2001, Tardif et al 2011)
- Aging associated with decreased fat mass (longitudinal follow) (Ross et al 2012)
- Response to a glucose challenge is not significantly different for geriatric marmosets
- Geriatric marmosets have significantly reduced VO₂ compared to young animals

Homeostatic Aging

 Geriatric marmosets have significantly higher diastolic and mean arterial pressure

Homeostatic Aging

 Geriatric marmosets have significantly less diverse gut microbiome

Immune Aging

• Serum albumin concentrations decrease with age (Ross et al 2012)

 Older animals express increased inflammatory states

Translational Phenotyping – from mouse & human to marmoset

Stimulus Pair 1

Stimulus Pair 2

Stimulus Pair 3

Stimulus Pair 4

Stimulus Pair 5

Stimulus Pair 6

Mobility

Geriatric marmosets have significantly reduced movement, but retain normal social behaviors

Hanging (stretching) behavior is significantly associated with risk of death in next 6 months

Mobility

Cognition

 Tasks to assess visual learning, spatial learning, impulse control, and executive function

Photo: Georgia Tech

Marmoset Conveyor

Single Treat

Marmoset Conveyor

First Dual Treat

Marmoset Conveyor

Subjects :39 Older 8+ years, n = 21 Young <8, n= 18

(Alex Greig)

Detoured Reach

Detoured **Reach Task**

(Khira Wharford)

Detoured Reach

Intervention testing -Rapamycin

Marmoset Rapamycin

Pilot study: 14 months Marmosets aged 7 – 9 yrs Rapa - 4 male/female pairs Control – 2 male/female pairs

- Marmosets trained to receive oral daily doses of rapamycin
- Serum rapamycin values similar to those published for rodent and human studies

(Tardif et al 2014)

Marmosets receiving rapa do not exhibit significantly altered glucose metabolism

(Ross et al 2015)

Longitudinal follow - No significant detriment in glucose metabolism with 12 months treatment

Salmon, Unpublished Cohort 1 Males and females

Rapamycin Conclusions

- Rapamycin is having no negative impacts on metabolic function in marmosets
- •There are currently no significant differences between rapamycin and control animals for
 - Activity
 - Locomotion
 - Metabolic function

Continue to follow the progress

Marmoset Aging

- •We are able to quantify more than just longevity
- •We are able to use techniques from mice and humans to examine marmoset aging behaviors
- •We are able to begin testing interventions that may increase health-span

Acknowledgements

SNPRC

Dr. Suzette Tardif Donna Layne-Colon

UT Health San Antonio

Dr. Adam Salmon Dr. Kelly Reveles Dr. Arlan Richardson Dr. Veronica Galvan Dr. Steven Austad Aubrey Sills Joselyn Artavia

Trinity University

Dr. Kimberley Phillips

A&M San Antonio

Dr. Dawn Weatherford Dr. Alan Daniels Many many undergrads

Funding

NIH/NIA Claude D Pepper Center – San Antonio Southwest National Primate Center Pilot Funding Biology of Aging NRSA Training Fellowship KL2 Pepper Center Scholar