

Useful Products from Coal

National Academy of Sciences October 25, 2018

Angelos Kokkinos

Director, Office of Advanced Fossil Technology Systems

U.S. Coal Production and Use by Key Market Sector

Existing & Past End Use Applications for Coal & Byproducts

Examples

• Iron and Steelmaking

- Metallurgical Coke
- Slag Foaming Agent
- Charge Carbon
- DRI Reductant

Non-Ferrous Metallurgy

- Ferroalloys
- Silicon Metal
- Aluminum
- Titanium
- Germanium

Environmental Applications

- Municipal Water/Wastewater
 Filtration Media
- Activated Carbons

• Construction Products

- Cement Additives (Pozzalons)
- Lightweight Aggregates
- Chemicals
 - Wood Preservatives
 - Fertilizer
 - Aromatics

Consumer Products

- Medicines
- Shampoo
- Carbon Products
 - Graphite
 - Fibers
 - Rubber Fillers
 - Electrodes

Coal for Value-added Chemicals

DOE Research Areas

- Coal to Liquids
 - Jet fuel
 - Methanol, an intermediate for chemicals production
- Coal for Ammonia and Hydrogen Production

ource: Adobe Stock 103139810

 Hydrogen shows promise as an energy carrier

Fischer-Tropsch Synthesis Rig, University of Kentucky

Modular Systems: Speed and Affordability

Flexible, small-scale systems enable wide adoption via subsystem repetition

- Unreliable scale up
- Long, expensive development
- Incremental progress

Beat economies-of-scale:

- CFD to rapidly create novel reactor configurations
- Microwave, plasma etc. to intensify reactions
- Advanced manufacturing to replicate reactors at low cost

Example

Velocys: Small, Modular & Efficient GTL Reactors

www.velocys.com

Coal and Non-Ferrous Metallurgy (Examples)

Ferroalloy Production

- Electrodes from Pitch/Calcined Anthracite
- Reductant: Coke
- Silicon Metal
 - Electrodes from Pitch/Calcined Anthracite
 - Reductant: Low Ash Bituminous Coal
- Aluminum
 - Cathodes from Pitch/calcined Anthracite
 - Anodes: Pitch/Petroleum Coke
- Titanium
 - Ilmenite Reductant- Anthracite
 - Chlorination: Anthracite or Coke

Coal and Environmental Applications (Examples)

- Water/Wastewater Filtration Media
 - Narrowly sized to optimize filter bed porosity
 - Must be resistant to attrition during filter backwashing (i.e., hard particles)
- Activated Carbon
 - Coal-based activated carbons originally developed for gas masks (1940's)
 - Has been produced from bituminous coal and lignite

Example: Chemicals from Byproduct Coke Plants

Example Carbon Products Value Chain

USGS Critical Minerals List

Federal Register Vol. 82, No. 246 Tuesday, December 26, 2017

Title 3—

Executive Order 13817 of December 20, 2017

Presidential Documents

The President A Federal Strategy To Ensure Secure and Reliable Supplies of Critical Minerals

- Aluminum (Bauxite)
- Antimony
- Arsenic
- Barite
- Beryllium
- Bismuth
- Cesium
- Chromium
- Cobalt
- Flourspar

- Gallium
- Germanium
- Graphite (Natural)

60835

- Hafnium
- Helium
- Indium
- Lithium
- Magnesium
- Manganese
- Niobium

- Platinum Group Metals
- Potash
- Rare Earth Elements
- Rhenium
- Rubidium
- Scandium
- Strontium
- Tantalum

Concentrations Found in U.S. Coal Byproducts (So Far)

- Cobalt: 1,000+ PPM
- Nickel: 900+ PPM
- Manganese: 1.5+ wt%
- Rare Earths: 800+ PPM

- Zirconium: 2+ wt%
- Hafnium: 500+ ppm
- Yttrium: 1,000+ PPM
- Alumina: 30+ wt%)

Needs:

- Finding more and higher assay materials (sampling and analysis work)
- Laboratory mineral processing and hydrometallurgy testing

Examples of Coal Use in Critical Minerals Value Chains

Aluminum

Expanded Market Potential for U.S. Coal

Example Requirements

- Very Low Ash Content:
 - Coke for aluminum smelter anodes
 - Expanded use for activated carbon and silicon metal smelters

High Alumina Content

Aluminum smelter feedstocks

High-Purity Concentrates

- Cobalt
- Manganese
- Zirconium
- Hafnium

Expanded Market Potential for U.S. Coal Products

Example Requirements

• Mesophase Formation Characteristics

- Pitches
- Needle Coke Feedstocks
- Salable Byproducts
 - CFB Fuel
 - Construction Products

• Physical Separations

- Coal Preparation (Separates Coal and Rock)
- Used to Concentrate Critical Minerals
- Lightweight Aggregate Feedstocks and Pyrites from Coal Products

Thermal Processing

- Drying
- Low-Temperature Carbonization
- High-Temperature Carbonization (Cokemaking)
- Calcination

Chemical Extraction

- Organics Extraction
- Inorganics Extraction (i.e., hydrometallurgy)

Research Challenges

Geology

- Finding the widest range of U.S. coal reserves that can be washed to <1 wt% ash
- Finding the highest concentrations of critical minerals in the U.S. coal measures.

Physical Separations

- Low specific gravity separations to produce lowash coal
- High specific gravity separations
- Float-sink distributions of critical minerals in coal and coal byproducts
- Multiple product run of mine preparation

Research Challenges

Thermal Processing

- Calcination and graphitization behavior of coal products
- Application of pyrometallurgy for extraction of critical mineral concentrates
- Optimizing feedstocks for activated carbon production

Chemical Extraction

- Optimizing yields for pitch production by direct extraction from coal
- Hydrometallurgical behavior of coal byproducts
 - Extraction of critical minerals
 - Production of environmentally benign tailings

Coal Use in the Manufacture of Useful Products

Higher-Value Carbons

• Graphene & carbon quantum dots occur naturally in coal structure.

- Carbon nanomaterials currently cost ~ \$ hundreds per gram.
 - Coal-based nanomaterials may offer inexpensive alternative.
- Integration of coal into the value chain of emerging industries:
 - Nanomanufacturing, additive manufacturing, carbon-based electronic materials, optical materials, and energy storage

Alternative to conductor & semiconductor materials

- Sophisticated, homogeneous systems generally not needed
- Carbon-based electronics as less expensive option
- Conductivity of carbon films, wires, printed devices can be controlled over many orders of magnitude.

Source: ORNL, Additive Mfg. Facility

Nanomaterials from Coal

Graphene quantum dots from coal

Source: "Coal as an abundant source of graphene quantum dots" Ye & Tour et. al. Rice Univ., Nature Communications 4, Article number: 2943 (2013) doi:10.1038/ncomms3943

Nanomaterials Possible:

- Graphene, graphene ribbons
- Carbon quantum dots
- Nanotubes

Current Applications (several commercial):

- Gas diffusion barriers
- Textiles
- 3D printing fluids
- Fuel cells
- Energy storage
- Structural composites

We need to change the equation..

Power Generation	Coal Beneficiation	Novel Products
Coal primarily burned to generate power (currently >92% of U.S. coal demand)	More efficient and lower-cost techniques to meet standards and improve export markets	Novel, high-value products from coal to open new U.S. and global markets

(DOE is funding R&D to make this happen!)

FossilNational EnergyEnergyTechnology Laboratory

Questions?

Angelos.Kokkinos@hq.doe.gov