Electric Drives for Battery Electric Vehicles Nady Boules

Navigating an Electric Vehicle Future Virtual Workshop, October 25-28, 2021

The US National Academies of Sciences, Engineering, and Medicine

- Fundamental Definitions
- Reasons for Industry Conversion on One Electric Drive Type, Based on PMSM
- *Current State-of-the-Art*
- Potential Advances in Electric Drive Technologies

BEV Electric Drive System

- Electric Motor
 Converts electric energy to mechanical energy
- Gearbox
 - Converts motor speed to wheel speed
- Power Electronics
 - Inverter: converts DC to AC
- Controller
 - Provides electronic signals to achieve desired drive output
- Sensors
 - *Current and rotor position*

Requirement for Propulsion Drives

- High torque density and power density
- High torque for starting, at low speeds and hill climbing, and high power for high-speed cruising
- Wide speed range, with a constant power operating range of 3–4 times the base speed
- High efficiency over wide speed and torque ranges, including low torque operation
- Intermittent overload capability, typically twice the rated torque for short durations
- High reliability and robustness

appropriate to the vehicle environment

NB MOTORS eptable *cost*

Different Types of Motors

OEMs Drive of Choice Permanent Magnet Synchronous Motor Drive (PMSM)

- Brushless
- PM rotor
 High energy NeFeB
- Single-Stage Gearbox
- 3-phase stator windings
- 3-phase inverter
 Sinusoidal control

Attributes	Brushed	Brushless
Commutatation	Mechanical	Electronic
Maintenance	-	+
Consistency over Life	-	+
Torque Density	-	+
Efficiency	-	+
Speed Range	-	+
Torque Ripple	+	-
Inertia	-	+
Thermal	-	+
Mechanical Noise	-	+
EMI	-	+
Cost	+	-

Why PM Motor ?

	PM Rotor			IM Rot	tor			SRM		
• Man conf	y different PM rot igurations	or	• Al k enc	bar windings Is by Al ring	s shorted at s (die cast)		Simple, ru Rotor los	ugged rot ses at hig	or structure h speed due 1	to flux
High cost	lest performance a	and	• Lov • Hig	v cost, indus	stry workhoi	rse	pulsation	s lial forces	result in acou	ustic noise
• Field	l excitation produc	ced by	spe	ed	cy at high		Non-sinu	soidal exc	titation	tod invertor
mag	nets Metric Machine	Cost	Reliability	Torque Density	Efficiency	Acoustic Noise	Controller Cost	Sensor Cost	Packaging Flexibility	
	Induction	3	3	2, 3 for Al. Cu	2, 3 for Al. Cu	4	3	3	2	
	Permanent Magnet	0	3	4	4	3	4	1 Due to Fld Wkg, # poles	4	
	Switched Reluctance	4	4	3	2	0	1	2	2	
NB	<u>Scale</u> : 0 – ۱	worst,	1 – bel	ow avera	age, 2-	- averag	ge, <u>3 –</u> a	bove a	iverage,	
MOTORS	4 – best							NB	Motors	, LLC

Motors – Current State-of-the-Art

- n Industry converged on using IPSM with RE magnets as the drive motor for BEVs due to its superior efficiency, torque, and power density, despite its cost disadvantage compared to IM.
 - IM is used on second axle in a two-motor system to improve 0-60 mph performance and enhance high speed efficiency (Tesla, GM).
- n Use of special material, design and manufacturing techniques to maximize efficiency, reduce cost:
 - Magnets with low Dy content
 - Magnets housed in deep rotor slots, protection and robustness
 - Thin, low loss, electrical steel laminations, with high flux carrying capabilities
 - > Flat wire, for higher slot fill, higher torque density
 - > Hairpin winding, minimize winding overhang, its loss and motor size

n Industry converged on single-stage gearbox with a gear ratio of 7:1 - 10:1

Traditional stranded windi

Hairpin winding^{*} *SOURCE: Villani (2018)*

PE – Current State-of-the-Art

- n The power switching devices and associated thermal system, interconnections, etc. dominate inverter size and cost
 - Most OEMs' use silicon-based IGBTs power-switching devices in their power electronic circuitry
 - Lower loss devices allow reduced cost thermal systems and smaller size

n Major improvements were introduced through:

- Design optimization of the IGBTs for minimum loss
- System integration to improve efficiency and power-density while maintaining a capability for scalability
- High performance control (Dead Beat Direct Torque Control, DB-DTC, with loss observer, reduces drive loss and enhances drive efficiency.
- > Acoustic and EM noise reduction

MOTORS

- Improved reliability (Fault Tolerance, Diagnostics & Prognostics)
- n Wide Band Gap (WBG) Semiconductors offer significant size and efficiency advantages, but are still in limited use in automotive (SiC at TESLA).

Motors - Potential Advancements

Motor Mass and Cost

> Increase Motor Speed

 Doubling the motor speed for the same output power would result in a motor with half the active length, weight, and active material cost, while the gear weight and cost and noise would increase. An optimum gear ratio should be sought

Use less RE magnet material

- Use the more abundant Cerium (Ce) instead of Dysprosium (Dy) and maintain performance
- Lower temperature grade RE PM (less Dy), Improved cooling and control (hotspot observer)
 - Lower losses (loss minimization DB-DTC control)
- *Higher speed (reduced torque for given power)*

NB Thinner

Lower magnet mass

Thinner magnets (hotspot observer + demag control)

Motor Design Equation

- Motor Power P = Motor Torque T * Motor Speed n
- Motor Torque T = $\pi/4 * D_a^2 * L_a * B_m * A_m$ Where,

	D _a	Diameter at air gap
	L _a	Active motor length
density	B _m	maximum air gap flux
sheet	A _m	Maximum stator current

So, for the same power the motor active length is inversely proportional to motor speed maintaining other parameters constants

PE - Potential Advancements

PE Cost and Efficiency

- Wide band gap (WBG) devices (SiC and GaN) receive significant attention by most OEMs:
 - Offer significant performance advantages over Silicon based IGBT devices, due to their lower onresistance, and their ability to operate at higher Voltages and temperatures
 - WBG devices show great potential to dramatically improve inverter size, efficiency, and cost
 - SiC is further developed, but GaN (on Si) has the potential of being lower cost
- Commercially available WBG devices do not meet automotive performance and cost requirements
- Fast switching WBG Semiconductors offer even higher efficiencies. They allow NE duced cost thermal systems and smaller

Higher

loss & inverter

efficiency --> Migher switching frequency Lower switching -->

100x lower loss

cost

- Higher operating temperature Lower cooling cost
- n GaN-on-Si sub NB Motors, CCtC volume

Estimated impact of Advanced Technologies

Motors

1 3

- Use of the new Cerium magnets and Increasing gear ratio to 14:1 for a mid-size vehicle (Tesla Model 3 rear), is estimated to achieve a weight and cost reduction of approximately 5 and 16 %, respectively.
 - Assumptions:
 - New Cerium-based magnet material would reduce magnet cost by 30 percent from current prices.
 - New gearing with a higher gear ratio of 14:1 instead of the 9:1 assumed in current systems.

Power Electronics

- *WBG devices are likely to dominate with GaN on Si being most cost effective (if device architectures could lead to usable performance).*
- There is a potential for inverter efficiency increase to 99% (from 96%), while reducing the size and weight of the cooling system components by ca. 75%. This efficiency gain translates to adding roughly 9-10 miles to a vehicle with a 300 mile range.

> Assumptions:

- Baseline for the estimates is today's Tesla Model-3 inverter, using SiC devices and a high degree of integration.
- Cost of GaN power switching devices is 25% lower than today's SiC; this decrease in cost includes the effects of resolving manufacturing issues and increasing production volume
- The reduced conduction and switching loss (at high switching frequency) will lead to reducing cooling needs by 75%
- Switching at higher frequency (100 kilohertz) will result in reduced filtering components size, weight and cost by 75%

• Natural electronics cost reduction trajectory leads to 25% controller cost reduction

s Inverter cost includes power stage, cooling and mechanical assembly, filtering, and MBoM@tons والبرام tops not include power distribution, DC/DC converter, or charging electronics.

Summary: Motors & Power Electronics

Motor Technology

IPSM motors with lower cost RE magnets will continue to dominate due to their superior efficiency. IM is best for second axle.

Using Ce-based RE magnets instead of Dy-based and Increasing gear ratio to 14:1 could lead to significant weight and cost reductions.

Power Electronic Technology

- WBG power switching devices are likely to dominate due to efficiency gains and reduced cooling system size and weight.
- GaN-on-Si could become most cost effective. Switching GaN devices at higher frequencies could further improve power density and efficiency

Examples: Propulsion Motor Performance Status

TABLE 5.1 Propulsion Motor Performance Status Summary – Motor Only								
Application	Power	Gear	Motor	Power	Max	Torque	Motor	Specific
	(kW)	Ratio	Only	Density ^a	Motor	Density ^a	Only	Cost ^a
			Weight ^a	(kW/kg)	Torque	(Nm/kg)	Cost ^a	(\$/kW)
			(kg)		(Nm)		(\$)	
GM Bolt	150	7.05	43	3.5	360	8.4	714	4.8
Tesla Model 3 Rear	188	9.03	45	4.2	380	8.4	750	4.0
BMW i3	125	9.7	31	4.0	250	8.1	496	4.0

^a Estimated.

SOURCE: Committee generated data, partially based on motor weight and cost data presented by Munro to the committee on September 24, 2019.

Application	Power	Gear	Motor	Power	Max	Output	Motor	Specific
	(kW)	Ratio	+ Gear	Density ^a	Motor	Torque	+ Gear	Cost ^a
			Weight ^a	(kW/kg)	Torque	Density ^a	Cost ^a	
			(kg)		(Nm)	(Nm/kg)	(\$)	(\$/kW)
GM Bolt	150	7.05	59	2.5	360	43.0	895	6.0
Tesla Model 3 Rear	188	9.03	71	2.6	380	48.3	1044	5.6
BMW i3	125	9.7	49	2.5	250	49.5	703	5.6

TABLE 5.2 Propulsion Motor Performance Status Summary – Motor with Gearbox

^a Estimated.

SOURCE: Committee generated data, partially based on motor weight and cost data presented by Munro to the committee on September 24, 2019.

Estimated Potential Impact of Possible Motor Technology Advancements

TABLE 5.3 Potential Impact of Future Motor Technologies on Various Vehicle Classes							
BEV 300	Vehicle Class (Power, Torque)	Technology Cost	Motor Total Weight, Cycle				
Motor Technologies		by Class	Efficiency				
• Cerium magnets	Small (110 kW, 142 Nm)	\$ 531	43 kg, 90.5%				
• Higher gear ratio (14:1)	Medium (180 kW, 233 Nm)	\$ 868	67 kg, 91%				
	Crossover (150 kW, 194 Nm)	\$ 724	57 kg, 90.7%				
	SUV (220 kW, 285 Nm)	\$ 1061	81 kg, 91.2%				
	Truck (250 kW, 324 Nm)	\$ 1206	92 kg, 91.5%				

- n For mid-size vehicle (Tesla Model 3 rear), there is a potential for weight and cost reduction of approximately 5 and 16 percent, respectively
- n Assumptions:
 - New Cerium-based magnet material would reduce magnet cost by 30 percent from current prices.
 - New gearing with a higher gear ratio of 14:1 instead of the 9:1 assumed in current systems.

Examples: Inverter Performance Status

TABLE 5.4 Power Density and Cost of Current Inverter Topologies						
A	Power(kW) Inverter Weight ^a		Power Density ^a	Inverter Cost ^a	Specific Cost ^a	
Application		(kg)	(kW/kg)	(\$)	(\$/kW)	
17 GM Bolt	150	10	15.0	700	4.7	
Tesla Model 3	188	5.5	34.1	800	3.5	
BMW i3	125	19.0	6.6	1100	8.8	

^a Estimated.

SOURCE: Committee generated data, partially based on motor weight and cost data presented to the committee on September 24, 2019.

n Not meant for side-side comparison:

Each adopts a different integration strategy

They adopt different switching technologies: GM-Bolt and BMW-i3 use IGBTs, while Tesla-Model 3 uses SiC switches

Increasing gear ratio to 14:1 could lead to significant cost reductions.

Estimated Potential Impact of Possible Inverter Technology Advancements

TABLE	FABLE 5.5 Potential Impact of Future Inverter Technologies on Various Vehicle Classes						
	BEV 300	Vehicle Class	Technology Cost	Inverter Weight,			
	Inverter Technologies	(Power)	by Class	Efficiency			
	GaN-based power	Small (110 kW)	\$ 334	2.3 kg, 98.5%			
	switching devices	Medium (180 kW)	\$ 471	3.8 kg, 99%			
	• High frequency	Crossover (150 kW)	\$ 412	3.2 kg, 98%			
	switching (100 kHz)	SUV (220 kW)	\$ 550	4.7 kg, 99%			
		Truck (250 kW)	\$ 609	5.3 kg, 99%			

- n There is a potential for inverter efficiency increase to 99 percent (from 96 percent), while reducing the size and weight of the cooling system components by ca. 75 percent. This efficiency gain translates to adding roughly 9-10 miles to a vehicle with a 300 mile range.
- n Assumptions:

IOTORS

- > Baseline for the estimates is today's Tesla Model-3 inverter, using SiC devices and a high degree of integration.
- Cost of GaN power switching devices is 25% lower than today's SiC; this decrease in cost includes the effects of resolving manufacturing issues and increasing production volume
- The reduced conduction and switching loss (at high switching frequency) will lead to reducing cooling needs by 75 %
- Switching at higher frequency (100 kilohertz) will result in reduced filtering components size, weight and cost by 75 %
- Natural electronics cost reduction trajectory leads to 25 % controller cost reduction

Inverter cost includes power stage, cooling and mechanical assembly, filtering, and electronic controller only. It does not include power distribution, DC/DC converter, or charging electronics. NB Motors, LLC

Factors Influencing Drive System Cost

Factor	Impact
Drive Efficiency	Less battery kWhr, reduced cooling system costs,Lower system cost
Motor Speed	 Higher speed lowers motor volume, mass and cost
High Frequency & Temperature Electronics	 Lower volume, mass and cost due smaller magnetic components, capacitors Lower cooling costs
High Performance Control	 Loss minimization (Dead Beat Direct Torque Control (DB-DTC) with loss observer) Sensor reduction/elimination (observers) Acoustic and EM noise reduction Improved reliability (Fault T, D&P)
System Integration	 Shared housing, cooling, AC cable elimination, lower cost Reduced acoustic and EM noise Higher efficiency (no cable losses)

