

# Building University/Corporate/State Government Partnerships for Additive Manufacturing and Printed Electronics: A Massachusetts Example

#### **Prof. Craig Armiento**

Dept. of Electrical and Computer Engineering, University of Massachusetts Lowell Co-Director, Raytheon-UMass Lowell Research Institute (RURI)

Director, Printed Electronics Research Collaborative (PERC)

GUIRR Meeting October 18, 2017

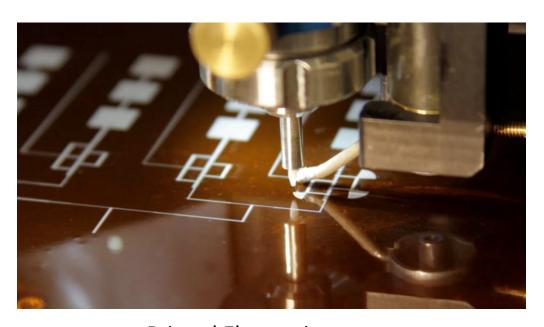


## Thiversity of Massachusetts Lowell (UML)





- One of 5 campuses of the University of Massachusetts system
- Comprehensive, national research university
  - More than 120 undergraduate, 36 masters and 33 doctoral degree programs
  - 600+ faculty
  - 18,000 students
  - \$70M+ in research expenditures
- Proximity to Corporate partners
  - High Tech area of eastern MA
  - Located close to many Raytheon facilities (e.g., Tewksbury, Andover)




## What is Printed Electronics?

Printed Electronics is an additive, CAD-driven process for depositing patterned electronic materials (metals, dielectrics or active materials) onto flexible, rigid, or non-planar substrates. It's similar to 3D printing in the electronic domain.



**Conventional 3D Printing** 



**Printed Electronics** 

Printing electronics enables fast prototyping and new form factors for electronic products



## The Potential of Printed Electronics

## Accelerating Product Development

- Products are manufactured directly from CAD no lithography/masks required
- Rapid prototyping reduces the time to market and faster design iterations
- Rapid prototyping encourages more risk taking in design

## Changing the Form Factor

- Electronics can be implemented over large areas e.g., printed displays
- Additive (printed) processes put materials only where needed no waste
- Substrates can be low cost and don't have to be rigid
- Electronics can be flexible, conformal, wearable and embedded into 3D objects
- Electronic products can be expanded to include companies that manufacture paper and plastics!













Printing of electronically-functional materials will change the form factor for electronics, accelerate the product development cycle and change the way we interact with electronics



## **Applications/Industries that will Use Printed Electronics?**

- Anything that's wireless (with an antenna)
  - IoT, RFID
- Next Generation 5G Cell Phones
  - 30 GHz, 64 element antenna arrays

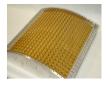








#### Medical Devices


- Smart drug delivery systems send patient data to physicians
- Health monitoring





#### Defense

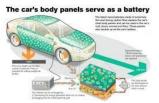
- Low cost, flexible radar systems
- Monitoring the soldier/pilot (health, communications)



#### Wearable Electronics

Active textiles




#### Automotive

Car radars, moldable electronics, printed batteries, light weighting

## Food Industry

Smart Packaging to monitor food spoilage







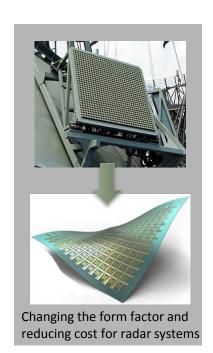


## What Are the Opportunities for Printed Electronics?

- Expected to become an enabling technology for a new generation of electronic products
  - Will impact many industries and provide entry for new entrants
- Printed Electronics is in the early stages of development
  - Like the IC industry in the mid-70's
  - Need to develop the supply chain
- There is an opportunity for state economies to get ahead of the curve and cultivate a regional ecosystem in printed electronics
  - Pull existing industries/suppliers into the PE space
  - Encourage startups
  - Workforce training



## Raytheon-U Mass Lowell Research Institute (RURI)




Saab Emerging Technologies Building

- Joint research research center between Raytheon and UMass Lowell (UML)
- R&D for Raytheon on Printed Electronics
- Occupies the entire 4<sup>th</sup> Floor Saab Emerging Technologies Building on the UML campus
- Moved into facility January 2015

## What is Unique about RURI is:

- New concept in university-industry collaboration
- Raytheon employees are co-located with UML faculty, students
- The only Raytheon facility located on a university campus
- The only UMass facility with a corporate partner
- Internal Raytheon projects on additive/printed electronics
- Manufacturing technologies to develop radar systems with lower cost, and different form factors
- Partner on federal funding pursuits
  - Millions of \$ working with federal manufacturing institutes,
     ONR, Army, Air Force
- Train the next generation of Raytheon engineers





## How/Why did RURI Happen?

## Strategy

- Identify companies that:
  - Need R&D to stay competitive
  - Do not have a dedicated research organization
  - Are local to the university proximity counts!

## Opportunity (circa 2011)

- New state-of-the-art research building was in planning stage
  - Available space... 3<sup>rd</sup> and 4<sup>th</sup> floors would not be built out due to lack of funds
- Raytheon was not active in Printed Electronics
- Major Raytheon facilities are located within a 15-20 minute drive of campus
- Expertise on UML campus in plastics, nanomanufacturing

## Challenges

- Raytheon had never had a physical footprint on any campus
- UML had never had a company using space on campus
- Raytheon is a conservative, risk adverse company
- Logistics (finances, ITAR, etc)

#### Tactic

- Embed– took a sabbatical at Raytheon
- Confirm their need, "sell" the idea, convince working engineers and executive management



## **Printed Electronics Research Collaborative (PERC)**

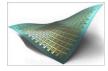
#### **PERC Mission:**

Develop the supply chain for printed electronics in Massachusetts (and NE)

## **State Funding**: Massachusetts Tech Collaborative (MTC)

- \$4M committed based on 1:3 match of corporate investments and federal funds
- Kicked Off in January 2015
- Funds to be used for equipment only
- PERC has raised over \$7M in corporate and federal funds
- Preposition teams for federal funding opportunities
  - ONR, Army, America Makes, NextFlex
- 14 companies have joined PERC as members so far... more coming




Governor Baker at UML announcing state investment





## **Developing the Printed Electronics Supply Chain**

**Systems** 



Flexible Phased Array Radar

Raytheon

BAE SYSTEMS

TTM Technologies...

Subsystems

**Phased Array** Antennas

AM-Based **Printed Circuit Boards** 

Frequency Selective Surfaces





Components

Thin ICs with Printed Interconnects

Printed **Transistors** 

Antennas

Metamaterial **Based Devices** 











**Processing Equipment** 

3D structural printers

Functional ink printers-2D

**Functional** ink printers for 3D objects

**EMag Design** 

& simulation

Pick & Place die mounting on flex substrates

Software for

2D to 3D

circuit layout

Optical & thermal sintering

Materials

modeling &

engineering



**Modeling & Design for AM** 

> **Printable Materials**

Electrically Conductive Inks

CNTs & graphene

**Modeling Tool** 

Integration;

Structural, EMag,

thermal...

Flexible low loss **Substrates** 

Dielectrics

Ferroelectric materials

Thermally Conductive Inks

MICRO CHEM



PERC/RURI has been visited by over 100 companies and organizations



# **PERC/RURI Integrated Facility**

## Printing Lab

- Optomec Aerosol Jet
- nScrypt Micropen Dispenser
  - 4-head and single head
- Sonoplot Picoliter Dispenser
- Three 3D printers
- Photonic Curing
- Keyence Digital Microscope
- 4-point probe, profilometer

## **Modeling Lab**

ANSYS Multiphysics bundle

#### Microwave Test Lab

- Keysight Network Analyzers (26 GHz, 50 GHz) Three Wafer Probers
- Rhodes & Schwartz Spectrum Analyzer, VNA

#### **Antenna Characterization Lab**

Anechoic chamber

# Packaging and Subsystem Integration Robotic Arm for printing on 3D objects











8000 sq. ft. - Access Controls in place by floor, lab and office for ITAR Projects



## Provide R&D through sponsored research projects

- Leverage university expertise and integrated PERC facility
- Advanced design tools, extensive printing systems (2D and 3D) and broad range of characterization equipment
- Enable fast prototyping of new design concepts

## Create teams to pursue federal funding

- Most funding requires an integrated team
- Short deadlines on proposals it helps to have an existing relationship

## Support building out the PE supply chain

- Help connect system integrators, material suppliers, equipment vendors, etc.
- Expanding from DoD to Commercial-Medical devices, telecommunications

## • Faculty: Enabling research in multiple disciplines

All engineering disciplines, physics, chemistry, medical, business

## Workforce Training

Developing talent for MA companies



# **Use Federal Funding to Expand Capabilities**



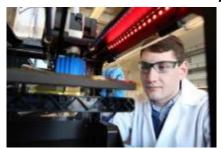








|   | Title                                                                                         | Sponsor              | Partners                                          | UML Value   | Total Value            |
|---|-----------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------|-------------|------------------------|
| F | FEDERAL AWARDS/PROPOSALS                                                                      | -                    |                                                   |             | includes cost<br>share |
|   | Novel, Low-Cost Phased Arrays<br>Manufactured by 3D Printing                                  | ONR- Phase 2<br>STTR | SI2, RTN                                          | \$200,000   | \$749,000              |
|   | Printed Materials with Embedded Electronics                                                   | Army-SBIR<br>Phase 1 | SI2, RTN                                          | \$20,000    | \$60,000               |
|   | Printed Materials with Embedded Electronics                                                   | Army-SBIR<br>Phase 2 | SI2, RTN                                          | \$125,000   | ~\$625,000             |
|   | Multimaterial 3D Printing of Electronics and Structures                                       | America<br>Makes     | RTN, GE, nScrypt,<br>Rogers Corp, USF             | \$188,000   | \$2,000,000            |
|   | Multi-Functional Substrates and Printing ntegration for RF Devices                            | NextFlex 1.0         | RTN, CST, Rogers,<br>Flexcon, Daussalt<br>Systems | \$1,820,000 | \$1,820,000            |
| / | Flex-Hybrid Electronic X-Band Antenna<br>Arrays for Next Generation of Deployable<br>Antennas | NextFlex 2.0         | SI2, RTN                                          | \$320,000   | \$1,467,000            |
|   | Additively Manufactured Phased Array for Airborne Applications                                | AFRL                 | RTN                                               | \$50,000    | \$150,000              |
|   | TOTAL                                                                                         |                      |                                                   | \$2,723,000 | \$6,871,000            |


Army Natick funding coming through HEROES for functionalized materials

Federal projects enable PERC to hire staff and students and collaborate with industry



# **Workforce Training**


- One PhD and 2 MS students graduated from PERC within last year
- 4 Completed capstone teams over over 2 academic years
- Current students
  - 5 Ph.D. students
  - 8 M.S. Students (E.E. and M.E.)
  - 14 undergrad students (3 capstone teams)
- All students and Staff are U.S. Persons
- 6 students hired by Raytheon in the last year



James Benedict-MED



Elicia Harper-MET



Carolyn Reistad - EDD, Antenna



Rocco Vigorito- Hardware Integration center (HWIC)



Jarrod Vaillancourt-MET



**Brian Morrison- MET** 



- RURI is a new model for academic-corporate R&D partnership based on co-location
- **PERC** is a model for coalescing corporations, universities and state government to develop a regional economic ecosystem in an emerging technology and a talent pipeline to feed these companies.

## My Advice

- Need champions on both the academic and corporate sides
  - Champions must have credibility within their respective organizations
- Proximity Counts!
  - Co-location creates more synergy
- Timing is important
  - Need companies with an urgent technology pull and concern of a capability gap
  - Need a local academic institution with requisite expertise, availability of modern campus facility and talented students to develop a talent pipeline
  - Need a state government willing to seed an unproven technology and support development of a new ecosystem in the region