Model Based Risk Assessment: Foundations and Applications

Ali Mosleh

UCLA School of Engineering and Applied Science mosleh@ucla.edu

National Academies Marine Board Washington DC Oct 29, 2014

Definition of Risk

 Risk is usually associated with the uncertainty and undesirability of a potential situation or event

Risk = Uncertainty and Undesirability

- In order to have a risk situation, both elements must be present
- Metrics

Risk = Likelihood and Severity

Three Questions of Risk Analysis

- What can go wrong?
- What are the consequences?
- How likely are they?

Input to Decision Making

Model-Based Approach

Anatomy of Scenario-Driven Risk Analysis

Causal Details through Fault Trees and Influence Diagrams

Incorporating Soft Causal Factors (e.g., Safety Culture Factors)

Application Areas

- Analysis of Hazards
 - Identification
 - Ranking
- Accident/Incident Analysis
 - Identifying common root causes
- Identification and Quantification of Safety Indicators
 - Calculation of conditional risk for various safety indicators
- Analysis of Precursor Events

Risk Analysis

Risk Model (Scenario Analysis)

Quantitative Ranking of Risks

ET Scenario	Min Cut Sets	Prob./ Freq	Cutset Freq.	Total Frequency
Scenario 3	IE	1.00E-02		
	/A1	1.00E-05	1.00E-07	
Scenario 9	IE	1.00E-02		
	/A2	1.00E-01		
	PP	1.00E-04	1.00E-07	
	IE	1.00E-02		
	CN	1.00E-04		
	/A2	1.00E-01	1.00E-07	
	IE	1.00E-02		
	/A2	1.00E-01		
	P1	1.00E-03		
	P2	1.00E-03	1.00E-09	
Scenario 6	IE	1.00E-02		
	L	1.00E-01		
	/A2	1.00E-01	1.00E-04	
	ΙE	1.00E-02		
	/L	9.00E-01		
	V2	1.00E-03		
	/A2	1.00E-01	9.00E-07	
	IE	1.00E-02		
	V1	1.00E-03		
	/A2	1.00E-01		
	/L	9.00E-01	9.00E-07	
Sum				1.02E-04

IRIS Hybrid Platform

Precursor and Event Assessments

The risk level is calculated as

R=Φ *P (Accident | Precursor)

- Φ is the frequency of the precursor event of a certain type
- If there are other precursors the total risk is calculated by summing over individual precursor risks

Precursor Event Assessment (1/2)

Precursor Event Assessment (2/2)

Selecting and Justifying Safety Performance Indicators

	Indicator	Frequency	"Risk Weight"
1	SI-1	3	0.02
2	SI-2	0.1	0.7
3	SI-3	1	0.01
4	SI-4	0	0.5
Ν	SI-N	$\overline{\phi_{N}}$	P_{N}

Monitoring Safety Using Performance Indicators

	Indicator	Freq.	"Risk Weight"
1	Engine Failure	3	0.02
2	Hydraulic System Failure	0.1	0.70
3	Missed Approach	1	0.01
4		0	0.5

Select Indicators to Plot

Select Airline

Total Risk

Applications

Nuclear

 PRA, Risk Monitor, Outage Planning, Precursor Analysis, Even Assessment, Regulatory Oversight

Aviation

SASO, Risk Informed Inspection, Safety Indicators

Space

 Mission Assurance, QRA, Precursor, Upgrades, Operational Decisions, Design Trade Studies (Shuttle, ISS, ESA,...)

Petro-Chemical

• QRA, Safety Assessment, Precursor Analysis