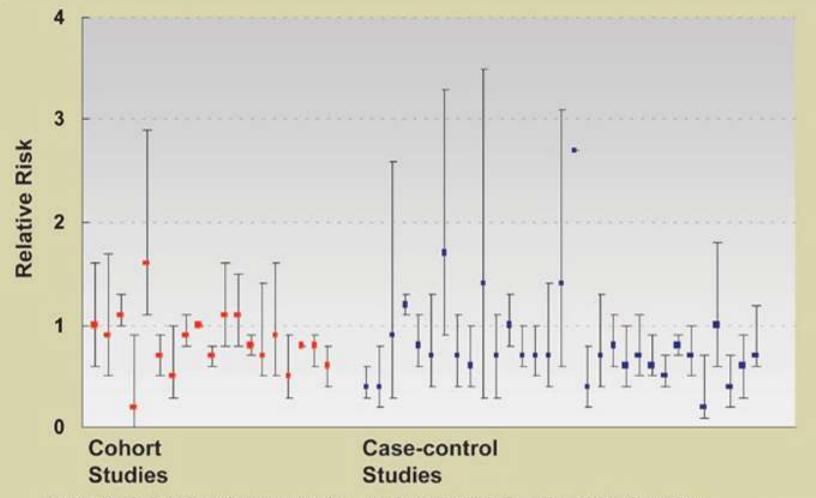
Evidence for the Role of Obesity in

Breast Cancer Progression

Pamela J. Goodwin, M.D., M.Sc., F.R.C.P.C. Professor of Medicine Mount Sinai and Princess Margaret Hospitals University of Toronto



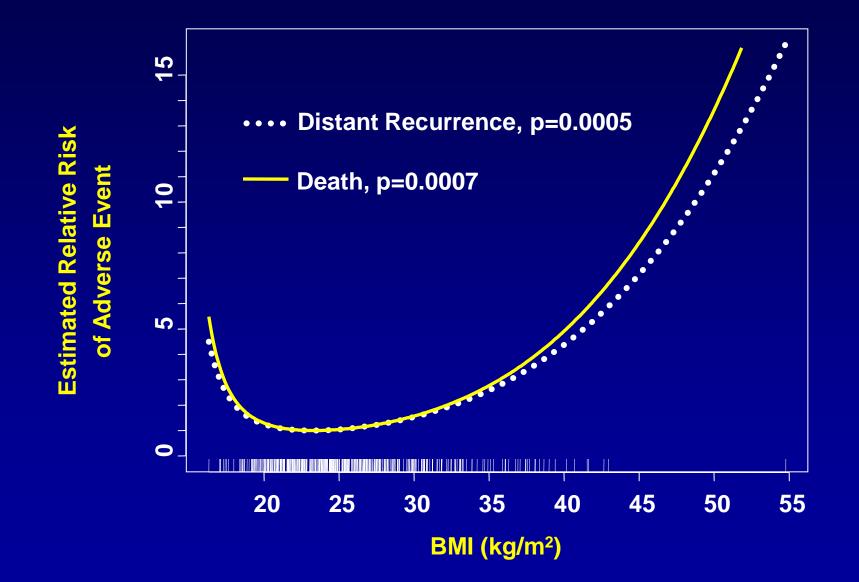
BMI and CANCER RISK: WOMEN

Cancer site and type Numb	er of studies				RR (95% CI)	Р	I ²
Endometrium	19		-		1.59 (1.50-1.68)	<0.0001	77%
Gallbladder	2	—			-1.59 (1.02-2.47)	0.04	67%
Oesophageal adenocarcinoma	3		_		1.51 (1.31–1.74)	< 0.0001	0%
Renal	12				1.34 (1.25–1.43)	< 0.0001	45%
Leukaemia	7		┡		1.17 (1.04–1.32)	0.01	80%
Thyroid	3				1.14 (1.06-1.23)	0.001	5%
Postmenopausal breast	31				1.12 (1.08-1.16)	<0.0001	64%
Pancreas	11				1.12 (1.02-1.22)	0.01	43%
Multiple myeloma	6	+			1.11 (1.07-1.15)	< 0.0001	0%
Colon	19	+			1.09 (1.05-1.13)	< 0.0001	39%
Non-Hodgkin lymphoma	7				1.07 (1.00-1.14)	0.05	47%
Liver	1	_			1.07 (0.55-2.08)		
Gastric	5	_			1.04 (0.90-1.20)	0.56	4%
Ovarian	13	+			1.03 (0.99-1.08)	0.30	55%
Rectum	14	+			1.02 (1.00-1.05)	0.26	0%
Malignant melanoma	5				0.96 (0.92-1.01)	0.05	0%
Premenopausal breast	20	-			0.92 (0.88-0.97)	0.001	39%
Lung	6 –				0.80 (0.66-0.97)	0.03	84%
Oesophageal squamous	2				0.57 (0.47-0.69)	<0.0001	60%
	0.5	0.8 1.0	1.5	2.0			
	Risk ra	tio (per 5 kg/m	² increase)			

Renehan et al. Lancet 2008;371:569–578

Research Summary: Physical Activity and Breast Cancer Risk

Lee IM. Physical activity and cancer prevention—data from epidemiologic studies. *Med Sci Sports Exerc.* 2003;35:1823–1827. Reprinted with permission from Medscape.


ASCO

The risk of developing breast cancer may be influenced by lifestyle patterns associated with energy balance:

Iow levels of physical activity
 obesity, weight gain (postmenopausal)

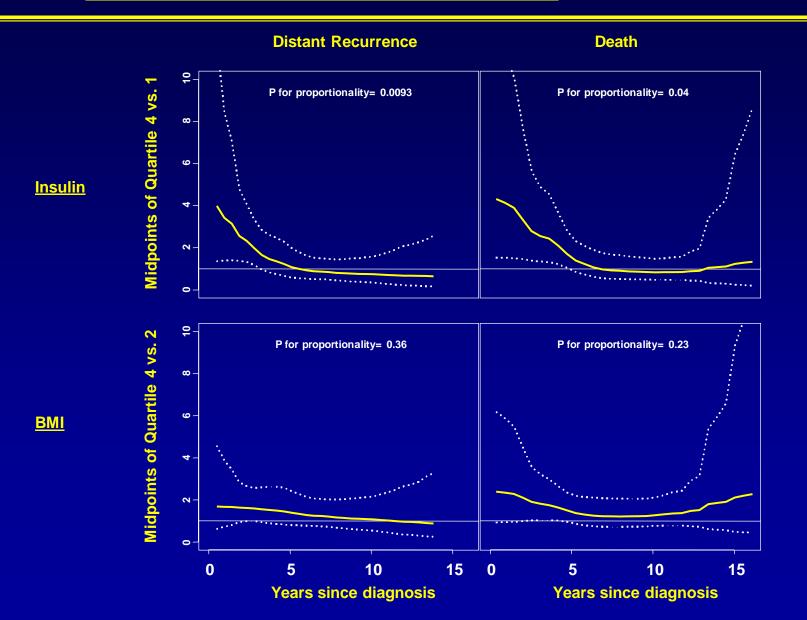
As a result, women who are diagnosed with breast cancer may have energy balance issues that differ from those of women in the general population.

Prognostic Effect of Body Size in Operable Breast Cancer

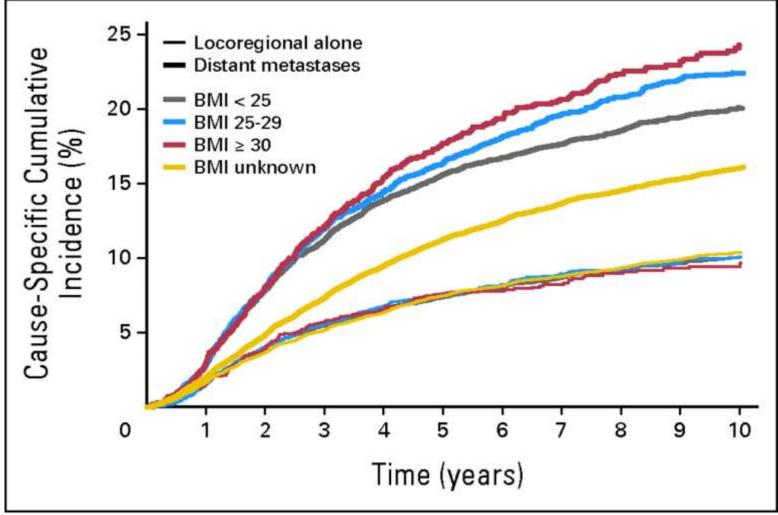
Obesity and Survival in Breast Cancer

Meta-Analysis

43 studies published 1963-2005

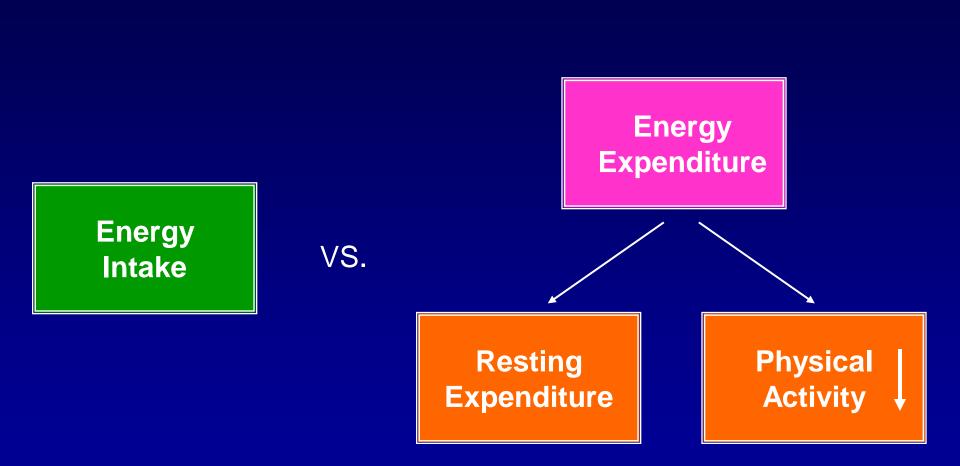

• comparison of obese vs. non-obese subjects

<u>Subgroup</u>	No. of estimates	Pooled HR (95% CI)	<u>P-value</u>
Survival measure All-cause	36	1.33 (1.21-1.47)	0.91
Breast cancer specific	19	1.33 (1.19-1.50)	
Obesity measure			
BMI	55	1.33 (1.23-1.44)	0.95
WHR	6	1.31 (1.14-1.50)	
Study design			
Observational cohort	48	1.36 (1.23-1.49)	0.53
Treatment cohort	7	1.22 (1.14-1.31)	
Menopausal status			
Pre-menopausal	16	1.47 (1.19-1.83)	0.25
Post-menopausal	12	1.22 (0.95-1.57)	
Both	36	1.33 (1.23-1.43)	
Year of diagnosis			
Pre-1995	30	1.31 (1.16-1.46)	0.17
Post-1995	11	1.49 (1.31-1.68)	


Protani M et al. BCRT 2010: 123:627-635

Temporal Pattern of Hazard Ratios for Fasting Insulin and BMI

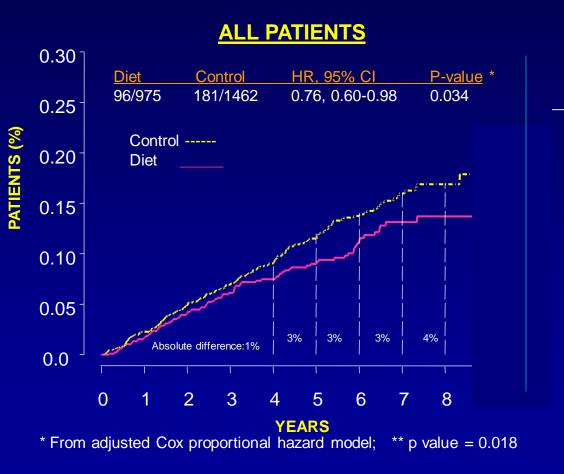
Toronto Breast Cancer Obesity Study (JCO 2011 in press)

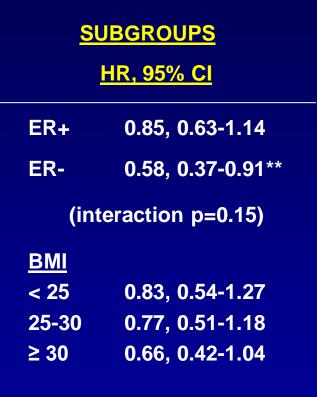


Cumulative incidence of first events (locoregional recurrences and distant metastases) in relation to body mass index (BMI) among 53,816 patients with early-stage breast cancer in Denmark. 1977 to 2006.

Ewertz M et al. JCO 2011;29:25-31

Obesity Reflects Energy Imbalance


Women's Intervention Nutrition Study (WINS)


- RCT of dietary fat reduction in postmenopausal breast cancer
- n=2437 age 48-79

_				12	MONTHS	
			Fat g	ram / da	y <u>Weight</u>	<u>Change</u>
Interven	tion		33.3	16.7	-2.1	kg
Control			51.3	24.4	+0.2	kg
		pvalue	<(0.001	<0.0	05
		Relapse Free Surviva (60 months)				
	<u>Diet</u>	<u>C</u>	<u>ontrol</u>		HR	<u>p(2 tail)</u>
All	96/975	18	31/1462	().76 (0.60-0.98) 0.034
ER+	68/770	12	2/1189	C).85 (0.63-1.14) 0.277
ER-	28/205	5	9/273	C).58 (0.37-0.91) 0.018
		<u> </u>				

Chlebowski R et al. JNCI 2006

WINS: RELAPSE-FREE SURVIVAL

Chlebowski, Blackburn, Elashoff, et al. JNCI 2006

Women's Healthy Eating and Living Study (WHEL)

- RCT of telephone-based diet intervention in pre and postmenopausal women with breast cancer
- n=3088 age 18-70

	12 months		72 mon	ths	
	Intervention	<u>Control</u>	Intervention	<u>Control</u>	
Vegetable (servings/day)	7.8	3.9	5.8	3.6	
Fruit (servings/day)	4.2	3.4	3.4	2.6	
Fiber (gm/day)	29.0	21.0	24.2	18.9	
% fat calories	22.7	28.4	28.9	32.4	
Weight (kg)	73.0	73.8	74.1	73.7	
	DFS		OS		
	(events @		<u>03</u> (events @	ō yrs.)	
Intervention	27/130)1	29/141	0	
Control	26/13 1	9	26/142	428	
HR (95% CI)	0.96 (0.80-1.14)		0.91 (0.72-	1.15)	
P	0.63		0.43		

Pierce JP et al JAMA 2007


WINS vs. WHEL

	<u>WINS</u>	<u>WHEL</u>	
Population			
Number	2437	3088	
Time Post	Up to 1 year	Up to 4 years	
Diagnosis	Post	Pre and Post 18-70	
Menopausal Status	48-79		
Age			
Intervention Group			
Fat Intake	Reduction	Transient reduction	
Weight Change	maintained	Modest weight gain	
	2.3 kg. relative loss		
DFS	HR 0.76 (0.60-0.98)	HR 0.96 (0.80-1.14)	

Physical Activity and Breast Cancer Outcomes

Holmes	NHS	• Recreational physical activity 2 years post-diagnosis; ≥ 9 met hours per week (vs. < 3)					
JAMA 2005	n=2987	Death HR 0.59 p=0.03 (trend)					
		BC Death HR 0.50 p=0.004 (trend)					
		Recurrence HR 0.57 p=0.05 (trend)					
Abrahamson	n=1264	Recreational physical activity 1 year pre-diagnosis					
Cancer 2006		Mortality					
		Q4 vs. Q1					
		All Subjects HR=0.78 (0.56-1.08)					
		BMI* ≥ 25 HR=0.70 (0.49-0.99)					
		< 25 HR=1.08 (0.77-1.52)					
		* Interaction p=0.05					
Holick	n=4482	• Recreational physical activity 5-6 years post-diagnosis; 8-20.9 met hours per week (vs.					
CEBP 2008	CWLS	< 2.8) BC death (26%) HR=0.53 p=0.01 (trend)					
		Non BC death (74%) HR=0.52 p<0.001 (trend)					
<u>lrwin</u>	HEAL	Total physical activity 9 met hours vs. inactive					
JCO 2008	n=933	Year Pre-diagnosis HR 0.69 p=0.045					
		2 Years Post-diagnosis HR 0.33 p=0.046					
Sternfeld	LACE	Total physical activity up to 3+ years post-diagnosis					
CEBP 2009	n=1970	Q4 vs. Q1					
		Death HR 0.76 p=0.20 (trend)					
		BC Death HR 0.87 p=0.41 (trend)					
		Recurrence HR 0.91 p=0.78 (trend)					
<u>Chen</u>	Shanghai	• Recreational physical activity 36 months post-diagnosis (8.3 met hours per week (vs.					
2011	n=1826	0) BC recurrence and/or death HR 0.59 (0.45-0.76)					
		Death (any cause) HR 0.65 (0.05-0.84)					

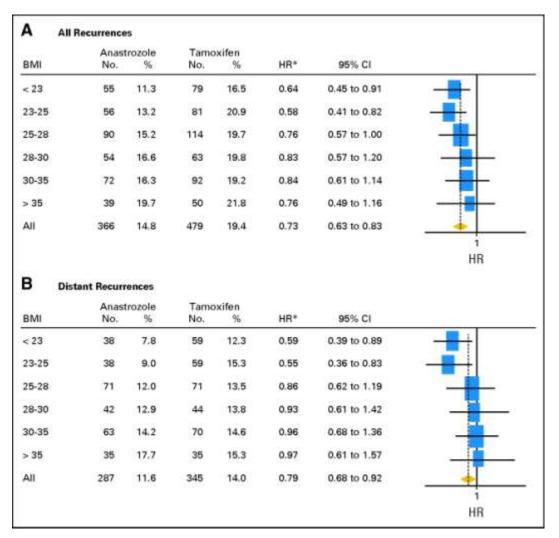
Mortality According to Physical Activity Level in Breast Cancer

Holmes MD et al JAMA 2005;293:2479-2486

<u>Obesity – Breast Cancer</u> <u>Prognosis</u> <u>Direct or Indirect Effect?</u>

INDIRECT:

- later diagnosis / higher stage at diagnosis
- suboptimal CXT dosing (BSA caps)
- reduced treatment efficacy (e.g. with Als)
- higher co-morbidity/competing COD death


DIRECT:

- growth stimulating effects of physiologic attributes of obesity

<u>Chemotherapy Dosing in Obese</u> <u>Breast Cancer Patients</u>

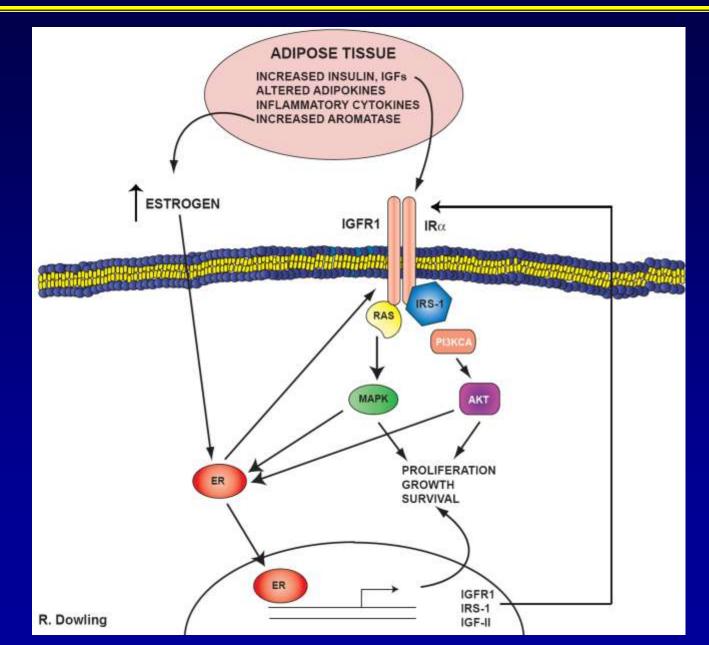
- Capping of chemotherapy doses common in the past, for example, at BSA = 2 (e.g. Madarnas Y BCRT 2001)
- Can lead to reduced treatment efficacy, potentially greatest effect in ER-BC (e.g. Colleoni M Lancet 2005)
- When actual body size is used to calculate doses, toxicity is not increased (Jenkins P Eur J Cancer 2007)
- Current recommendations are to use actual body size to calculate dose; recent RCT protocols reflect this approach (e.g. Greenman C Cancer 2007)

<u>ATAC Trial</u>: Hazard plots for anastrozole versus tamoxifen by body mass index (BMI) group for all recurrences and distant recurrences (Interaction p < 0.05).

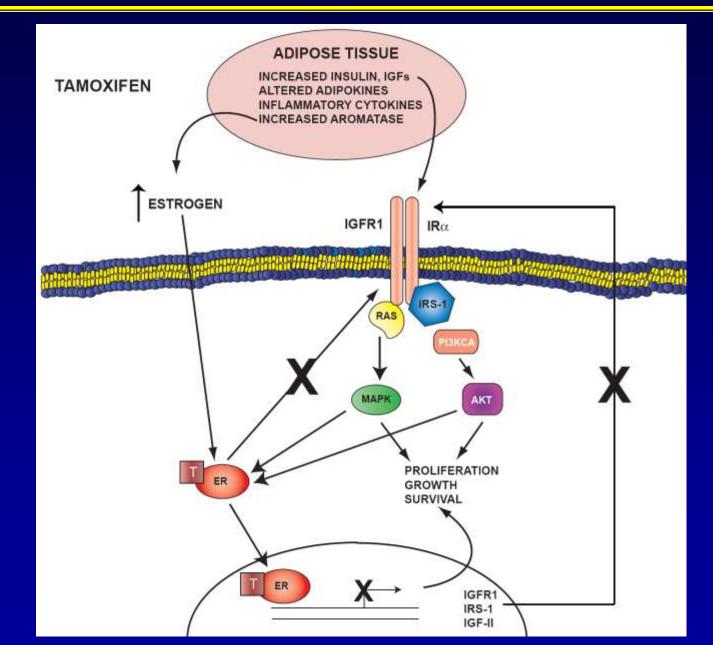
Sestak I et al. JCO 2010;28:3411-3415

	HR Overweight / Obese vs. Normal Weight				
	<u>DFS</u>	<u>OS</u>			
All Subjects (1/3 obese)	1.24 (0.92-1.68)	1.49 (1.00-2.68)			
Tamoxifen	0.94 (0.60-1.64)	0.83 (0.35-1.93)			
Anastrozole	1.53 (1.01-2.31)	1.93 (1.04-3.58)			

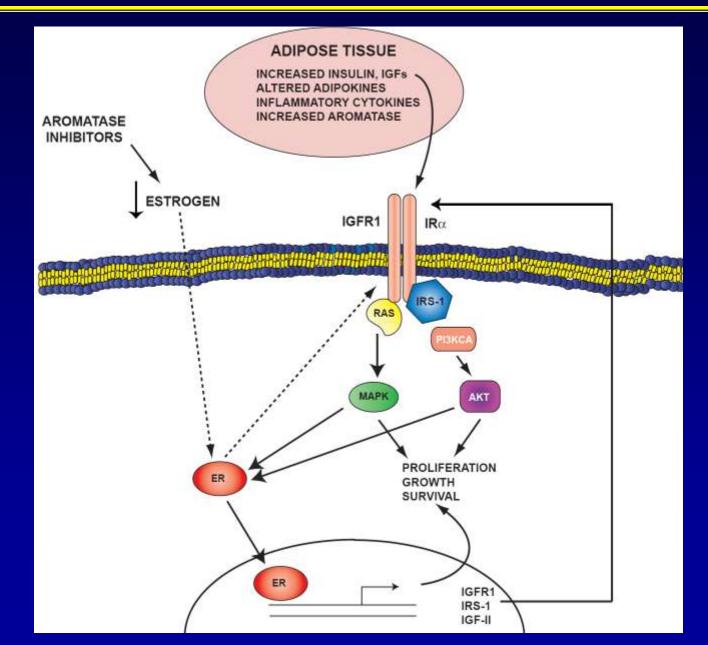
	Anastrazole vs. Tamoxifen				
	DFS OS				
Normal Weight	0.87 (0.59-1.27)	1.21 (0.63-2.33)			
Overweight / Obese*	1.47 (0.90-2.40)*	3.23 (1.39-7.53)**			

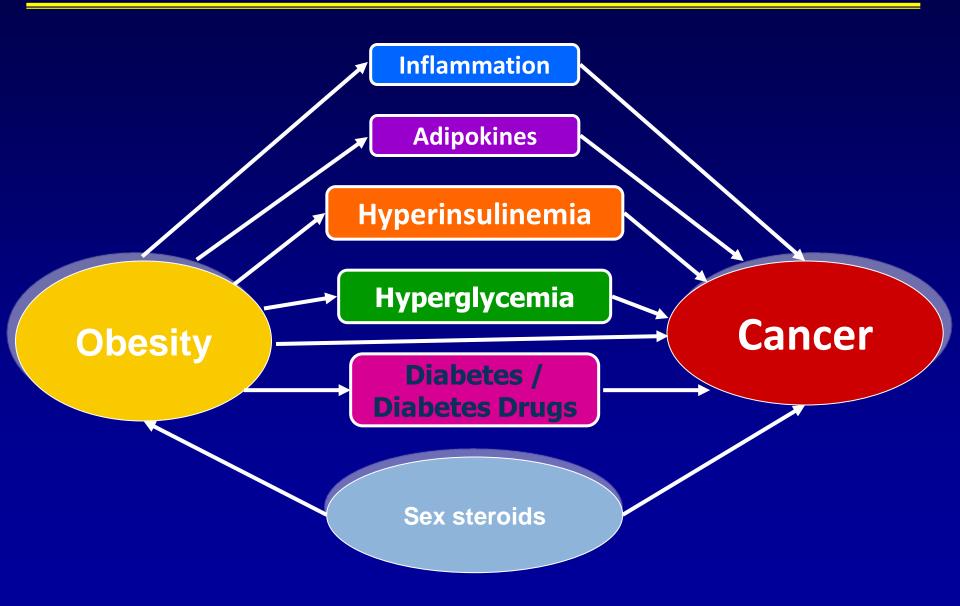

* 30 events TAM, 42 events ANA

** 8 events TAM, 22 events ANA


<u>Conclusion</u>: Anastrazole significantly less effective than tamoxifen in overweight or obese women

Pfeiler et al JCO 2011


ER – IGF – Cross-talk


ER – IGF – Cross-talk

ER – IGF – Cross-talk

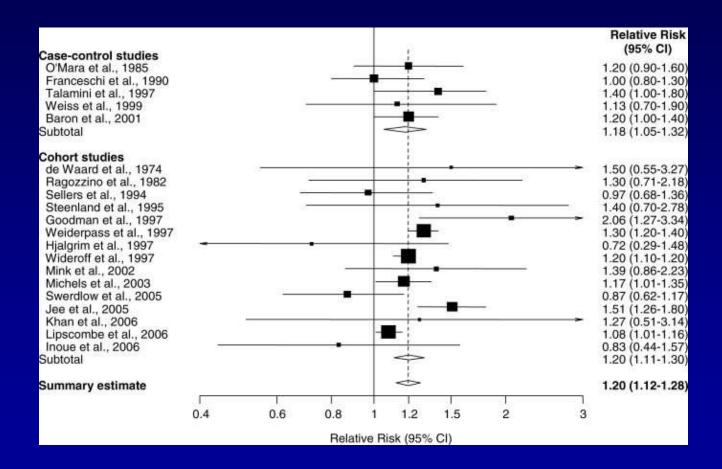
Obesity, Insulin Resistance and Cancer Potential Mechanisms

Reproductive Hormones and Breast Cancer Survival

- nested case-control study within WHEL Study
- cases: 153 BC recurrence
- controls: 153 BC no recurrence

Results:

	HR for Recurrence (per unit increase in log hormone concentration)				
Estradiol	1.41	p=0.04			
Bioavailable estradiol	1.26	(1.03-1.53)	p=0.02		
Free estradiol	1.31	(1.03-1.65)	p=0.03		


No significant difference: testosterone (total, bioavailable, free), SHBG

Rock CL et al. CEBP 2008;17:614

Obesity and the Insulin Resistance Syndrome (Metabolic Syndrome)

- A <u>CLINICAL</u> syndrome associated with obesity that predicts risk of <u>DIABETES</u> and CV disease
- **Physiologic alterations** include: insulin resistance, systemic inflammation, altered adipokine profile, prothrombotic state
- Multiple <u>definitions</u>, all include:
 - **Obesity** (cut point varies with ethnicity)
 - Abnormal fasting glucose
 - Abnormal lipid profile (high TG / low HDL-C)
 - Elevated blood pressure

Diabetes and Breast Cancer Incidence: A Meta-Analysis

Larsson SC et al. Int J Cancer 2007; 121:856-62

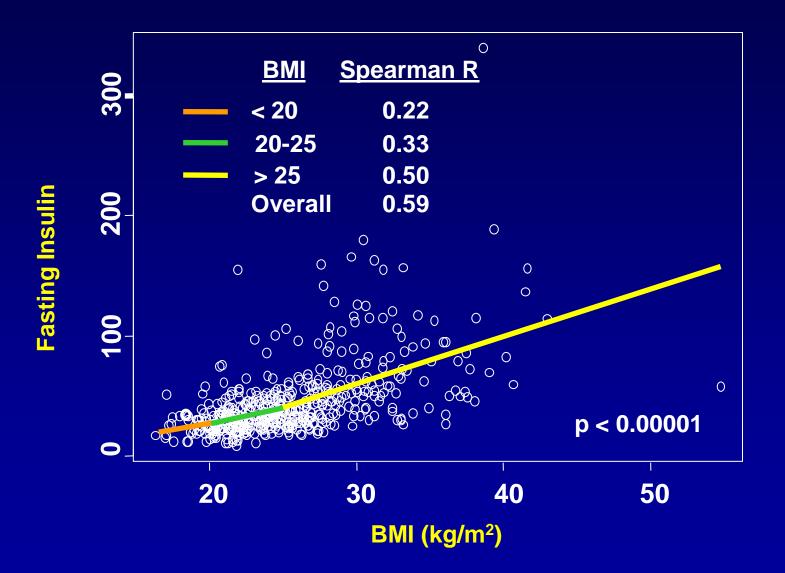
Diabetes and All Cause Mortality in Breast Cancer

Author	HR (95% CI)	% Weight
Srokowski et al ¹⁹	- 1.35 (1.31 to 1.39)	33.65
Lipscombe et al ⁶	1.39 (1.22 to 1.59)	21.66
van de Poll-Franse et al ¹⁸	1.54 (1.37 to 1.74)	23.28
Du et al ²¹	1.58 (0.86 to 2.92)	2.52
Yancik et al ¹⁷	1.76 (1.23 to 2.52)	6.42
Tammemagi et al²º	1.85 (1.47 to 2.32)	12.47
Overall	1.49 (1.35 to 1.65)	100.00
0.5	1 2 4	,
$l^2 = 62.7\%, P = .020$		

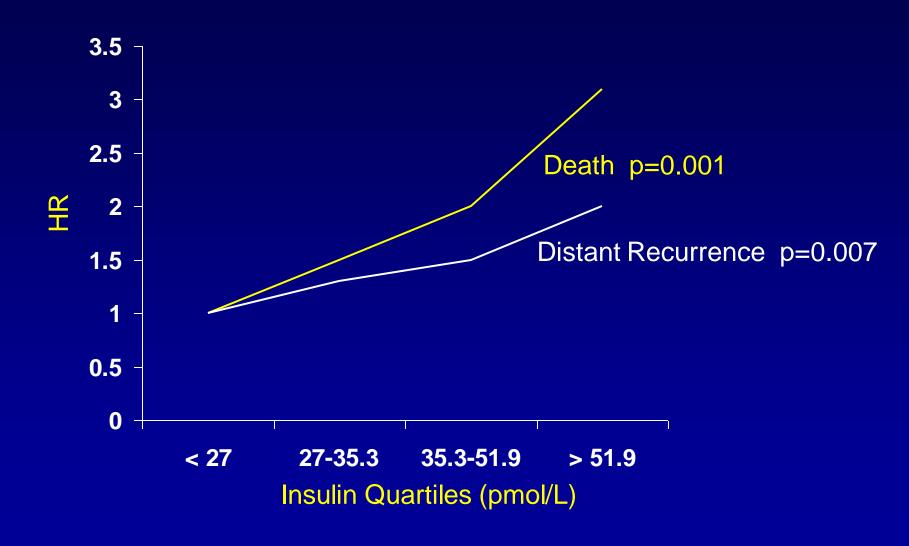
Peairs et al. J Clin Oncol 2010; 29:40-46

Fasting Glucose and Breast Cancer Outcomes

<u>Population</u>: • 512 early stage breast cancer


no known diabetes

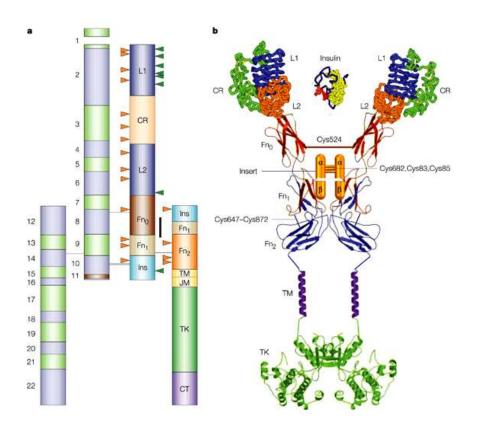
<u>Results</u> :	Quartile		DDFS		0	OS		
	Mean	Range	HR (adjusted)*	(95% CI)	HR (adjusted)*	(95% CI)		
	4.5	3.5-4.7		1		1		
	4.9	4.7-5.1	1.28	(1.02-1.60)	1.26	(0.93-1.70)		
	5.2	5.1-5.4	1.50	(1.04-2.17)	1.46	(0.89-2.40)		
	5.7	5.4-11.6	1.88	(1.06-3.35)	1.81	(0.83-3.93)		
			p=0.027	unadjusted	p=0.036	unadjusted		
			p=0.034 a	adjusted	p=0.014	adjusted		

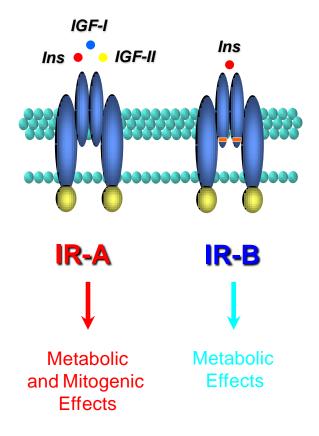

* adjusted for age, T, N, grade, hormone receptor, chemotherapy, hormone therapy

Goodwin PJ et al. J Clin Oncol 2011 (in press)

BMI and Fasting Insulin

Insulin and Breast Cancer Prognosis

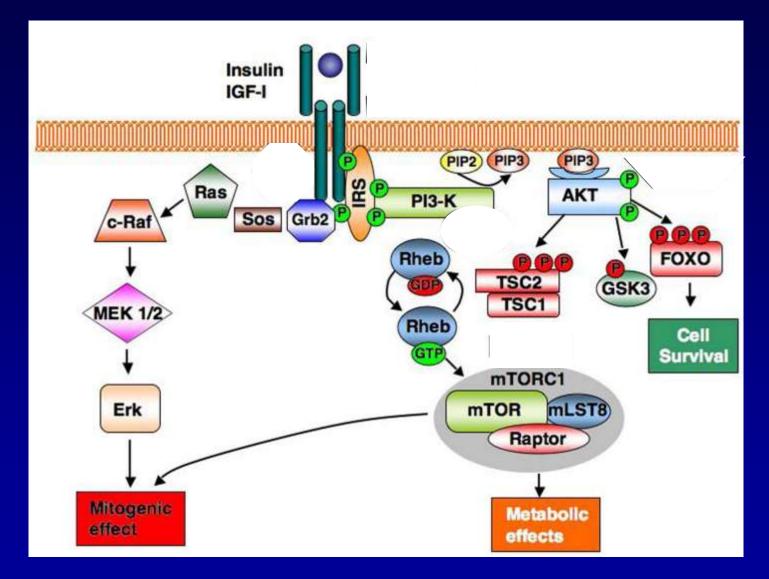

Goodwin PJ et al. J Clin Oncol 2002; 20:42-51


Prognostic Associations of Insulin in Breast Cancer

		n	Factor Measured	Recurrence	<u>Death</u>
Goodwin	2002	512	Fasting Insulin	HR=2.0	HR=3.1
Pasanisi	2006	110	Fasting Insulin IRS	HR=2.42 HR=3.0	
Pritchard	2011	667	Non-fasting C- peptide	p < 0.05*	
lrwin (HEAL)	2010	689	Fasting C-peptide		HR=3 (significant)
Duggan (HEAL)	2010	527	НОМА		HR=4.3 (BC death) HR=1.6 (all deaths)
Emaus	2010	1364	IRS Components: BMI, cholesterol, BP, exercise		HR 1.3-3.0 (significant)

* HR not provided

Insulin Receptor Isoforms



High Levels of Expression in Fetal and Neoplastic Tissues

DeMeyts and Whittaker Frasca et al. Nat Rev Drug Discov 2002; 1: 769-783 Mol Cell Biol 1999; 19: 3278-3288

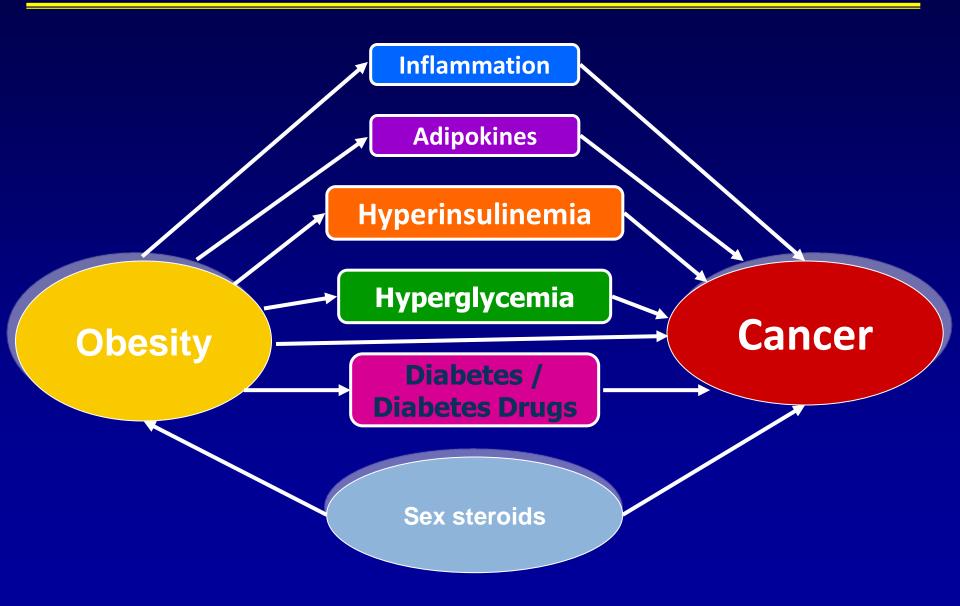
Molecular Action of Insulin

Adapted from Vigneri P et al., Endocr Relat Cancer 2009 Jul 20 (epub ahead of print)

IR, IGFIR in Human Breast Cancer

Population:

438 women with invasive BC


Prognostic Effects:

	<u>% Positive</u>	<u>Survival</u>	<u>P Survival</u>
Total IR*	59.0	Worse	0.009
Total IGFIR	37.5	Worse	0.30
Phosphorylated IGFIR/IR	55.3	Worse	0.046

* present vs. absent

Law JH et al. Cancer Res 2008

Obesity, Insulin Resistance and Cancer Potential Mechanisms

Biomarkers of Inflammation and Breast Cancer Outcome

- HEAL Study n=734 breast cancer survivors
- measurements mean 31 months post-diagnosis
- 4.1 years follow-up (DFS), 6.9 years follow-up (OS)

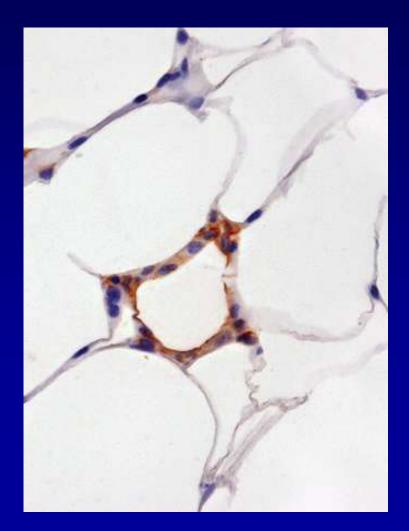
Results:

	DDFS		OS	
	HR	(95% CI)	HR	(95% CI)
C-Reactive Protein (mg/L)				
≤ 1.2	1		1	
1.3-3.8	1.58	(0.88-2.83)	0.94	(0.50-1.76)
≥ 3.9	1.91	(1.04-3.51)	2.05	(1.14-3.69)
	p=0.04		p=0.01	
Serum Amyloid A (mg/L)				
≤ 4.2	1		1	
4.3-8.0	1.00	(0.56-1.79)	0.97	(0.49-1.89)
≥ 8.0	1.62	(0.94-2.80)	2.91	(1.61-5.26)
	p=0.07		p=0.0001	

(adjusted for age, stage, race / site, BMI, HR, cardiovascular events)

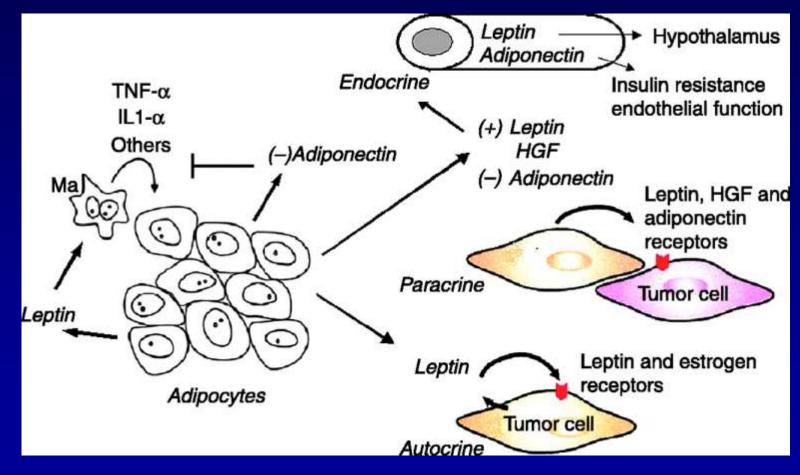
Pierce BL et al. JCO 2009;27:3437

Systemic Inflammatory Response and Breast Cancer Survival


- n=300
- 46 month follow-up
- pre-operative measurement

Results:

			Survival			
	<u>RFS</u>		BC Specific		<u>Overall</u>	
	HR	(95% CI)	HR	(95% CI)	HR	(95% CI)
C-reactive Protein (ng/L) ≤ 10 vs. > 10	0.40	(0.10-1.68)	0.62	(0.15-2.65)	0.60	(0.19-1.95)
		p=0.21		p=0.52		p=0.40
Albumin (gm/L) ≤ 43 vs. > 43	3.39	(1.61-7.12)	5.01	(1.85-13.57)	3.23	(1.58-6.59)
	ŀ	o=0.001		p=0.002		o=0.001


Murri AM et al. Br J Cancer 2007; 96:891

Local Inflammation: Crown-Like Structures Necrotic adipocytes surrounded by macrophages (Subbaramaiah K et al. Cancer Prevention Research 2011)

Adipokines in Cancer Risk and Progression

Adipokines as paracrine factors: ligand and receptor

Vona-Davis and Rose Endocr Relat Cancer 2007;14:189-206

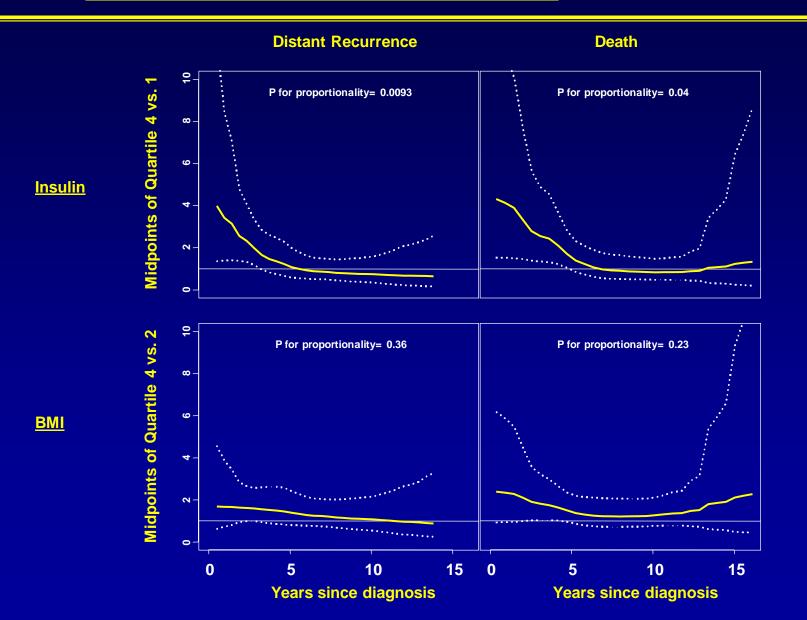
Leptin and Breast Cancer Prognosis

Toronto Breast Cancer Cohort Study

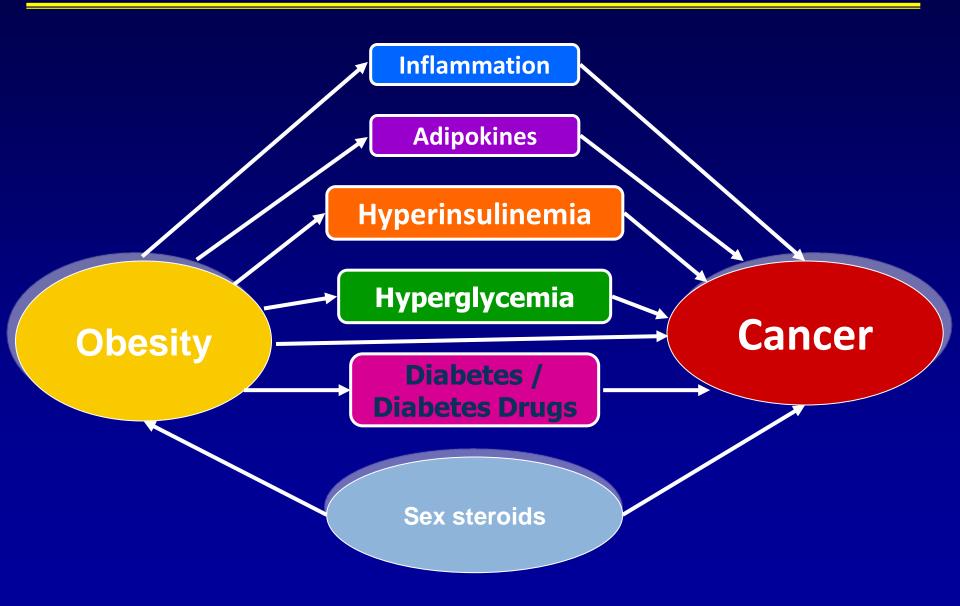
- **<u>Population</u>:** n=512 women with newly diagnosed breast cancer 1989-1996
 - fasting blood draw 6 weeks post-op, before systemic therapy
 - mean BMI=25.5 kg/m²

Results:

Leptin : BMI - Pearson r = 0.80

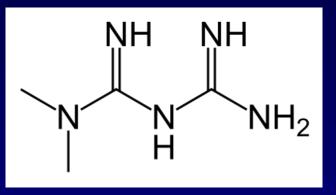

	Leptin (ng/ml)	DDFS HR			OS HR
	(mean)	Univariate	Adjusted*	Univariate	Adjusted*
Q1	4.97	1.16	1.0	1.23	1.15
Q2	10.2	1	1	1	1
Q3	16.2	1.09	1.12	1.10	1.09
Q4	27.4	1.58	1.52	1.71	1.56
		p=0.005	p=0.0055	p<0.001	p=0.011

* adjusted for age, T, N, grade, ER, pgR, adjuvant chemotherapy and hormone therapy


Goodwin PJ et al. J Clin Oncol 2011 (in press)

Temporal Pattern of Hazard Ratios for Fasting Insulin and BMI

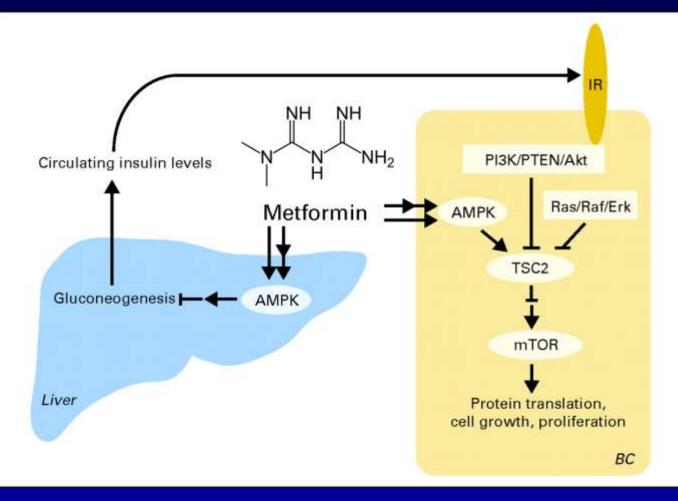
Toronto Breast Cancer Obesity Study (JCO 2011 in press)


Obesity, Insulin Resistance and Cancer Potential Mechanisms

Metformin (Glucophage–Aventis)

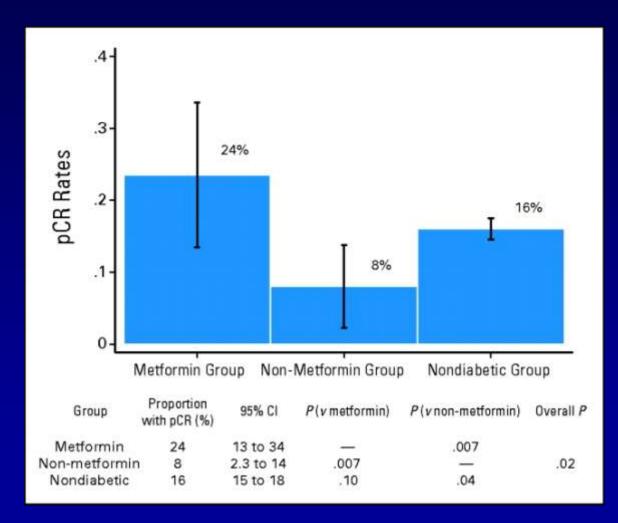
Galega officinalis (Goat's rue, French lilac)

- Widely used as treatment for type II diabetes
- Well tolerated, minor GI toxicity
- Lactic acidosis, severe but rare
- Lowers blood glucose and insulin levels without causing weight gain
- AMPK activator, but mechanism uncharacterized

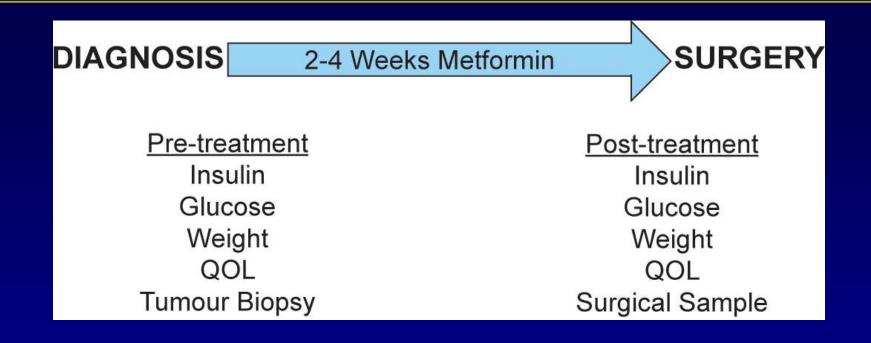

Observational Studies of Metformin and Breast Cancer Risk

<u>Year</u>	Author	Study Type	<u>HR (95% CI)</u>	<u>Comparison</u>
2009	Libby	Cohort	0.60 (0.32-1.10)	Metformin users vs not
2009	Currie	Cohort	0.88 (0.48-1.63)	Metformin now vs insulin
2010	Bodmer	Nested case control	0.44 (0.24-0.82)	Metformin > 5 yrs vs not
2010	Bosco	Nested case control	0.81 (0.63-0.96)	Metformin > 1 yr vs not
2010	Decensi	Meta-analysis	0.70 (0.28-1.77) RR	Bosco published after meta-analysis

None have reported details of breast cancer characteristics


Libby G, Bonnelly LA, Donnan PT, et al. Diabetes Care 2009; 32:1620-5. Currie CJ, Poole CD, Gale EA, et al. Diabetologia 2009;52: 1766-77. Bodmer M, Meier C, Krahenbuhl S, et al. Diabetes Care 2010; 33:1304-8 Bosco JLF, Antonsen S, Sorensen HT, et al. Cancer Epidemiol Biomarkers Prev 2011; 20:101-111 DeCensi A, Puntoni M, Goodwin P, et al. Cancer Prev Res 2010; 3:1451-1461

Mechanism of Metformin Action in the Clinical Setting


Adapted from Goodwin P J et al. J Clin Oncol 2009; 27:3271-3273

Pathologic Complete Response Between Study Groups (Metformin, No Metformin, Non-Diabetic)

Jiralersprong S et al. J Clin Oncol 2009; 20:3297-3302

Neoadjuvant "Window of Opportunity" Study

<u>Physiology</u>

Insulin Glucose Body mass index

Tumour Cell

Proliferation: Ki67 Apoptosis: TUNEL, cleaved caspase-3

Molecular Signalling

Phosphorylation: AKT(Ser473), AMPK(Thr172)

NCIC CTG MA.32 STUDY SCHEMA

T1–3*, N0-3,M0 invasive breast cancer diagnosed within 1 year Any radiotherapy, chemotherapy**, endocrine therapy, trastuzumab, biologics, bisphosphonates

If pT1C, ≥ 1 adverse prognostic factor
** CXT must be completed

Metformin 850 mg po bid X 5 years (includes 4-week ramp-up of 850mg po daily)

Identical Placebo One caplet po bid X 5 years (includes 4 week ramp-up of one caplet po daily)

Primary Outcome:	Invasive cancer free survival
Secondary Outcome:	Overall survival, Distant Disease-Free Survival, Breast Cancer Free Interval, Adverse Events, Hospitalization (CV, diabetes), QOL (888 subjects)
Embedded Correlative:	Weight, Fasting Insulin (baseline, 6 months, 5 years), Tumour Tissue
Sample Size:	3,582 (431 events) – 5 year IDFS 0.85 in placebo arm, HR =0.76, α=0.05 β=0.20
	2 interim analyses (benefit, futility) at 144 and 288 events
	Planned subset analyses (α=0.10, 2 sided; β=0.80) in ER/PgR neg (HR 0.65) and Triple Neg (HR 0.55)

FUNDED BY: NCI (US), CCS, BCRF, Apotex Canada, CBCF, Komen

Potential Predictors of Metformin Benefit in Human Cancer

		Indirect Effect (Insulin-Mediated)	Direct Effect
Host			
$\left\{ \mathcal{D} \right\}$	↑ BMI Physical Inactivity	++	
$\left\{ \begin{array}{c} - \\ - \end{array} \right\}$	↑ Fasting Insulin	+	
	Insulin Resistance	+	
$\left\{ \begin{array}{c} \\ \end{array} \right\}$	OCT1/2/3 (liver)	+	
	Germline gene expression	+	
<u>Tumor</u>			
AV LANDE	Tumor gene expression	+	+
	IR/IGF-IR	+	
	↑ PI3K/mTOR	+	+
	OCT1/2/3		+
ANNUE -	LKB1		+

DOES WEIGHT CHANGE ALTER BREAST CANCER OUTCOMES?

Prognostic Effects of Weight Gain

		<u>n</u>	<u>Weight Gain (kg)</u>	Prognostic Effect
Bonomi	1984	67	8.2	Adverse
Heasman	1985	237	4.3	None
Chlebowski	1986	62	>10	Adverse
Chlebowski	1986	62	< 10	None
Goodwin	1988	637	1.21-5.55	None
Camoriano	1990	545	5.9 (premenopausal)	Adverse (premenopausal)
Levine	1991	32	4.2	None
Goodwin	2001	445	1.6	None
Kroenke	2005	"Healthy" subsets "Less Healthy" subsets	> 2kg vs. 0.5 kg loss > 2kg vs. 0.5 kg loss	Adverse None
Caan	2006	3215	5-10% >10%	None None

<u>Population</u> - Nurses' Health Study, 5204 non-metastatic breast cancer 1976-2000

Measurement - self-report weight before and \geq 12 months post diagnosis

- self-report vs. actual weight r=0.99

<u>Results</u>

Breast Cancer Mortality (RR)

BMI Change Post Diagnosis (kg/m²)						
		Loss >0.5	Maintain	Gain 0.5- 2.0	Gain >2.0	р
Smoking	• Never	1.01	1.00	1.35	1.64	0.03
	• Ever	1.18	1.00	1.10	1.05	0.84
Baseline BMI	• <25 • ≥25	1.41 0.81	1.00 1.00	1.63 0.78	1.90 0.75	<0.01 0.18
N Stage	• N0 • N1	1.10 1.06	1.00 1.00	1.22 1.18	1.74 1.10	0.007 0.74
T Stage	• T1 • T>1	1.04 0.87	1.00 1.00	0.97 1.07	1.78 0.99	0.003 0.89

Kroenke CM et al. JCO 2005;23:1370-1378

LISA Study – RCT of a Telephone Based Weight Loss Intervention vs. Education

- 19 phone calls over 2 years based on Diabetes Prevention Program
- Goals \rightarrow up to 10% weight loss (to BMI \ge 21 kg/m²)
 - → calorie deficit 500-1000 kcal per day
 - → physical activity 150-200 minutes per week

	Effect on Weight (kg)*		
	Intervention n=165	Control n=158	
Baseline	82.8	81.3	
5 months	-4.7	-0.2	
12 months	-5.5	-0.7	
18 months	-3.8	-0.3	

* Effect similar in women with BMI \leq 30 kg/m² or > 30 kg/m²

PJ Goodwin (PI) / R Segal (Call Center Lead) / OCOG ASCO 2011

Intentional Weight Loss and Breast Cancer Risk

Cohort Studies	Weight Loss	Breast Cancer Risk	
Eliassen 2006	≥ 14.5%	↓ 57%	
Harvie 2005	≥ 5%	↓ 64%	

Bariatric Surgery Studies		Weight Loss	Cancer Risk	
Sjöström	2009	(women)	31.9%	↓ 42%
Adams	2009	(women)	31.0%	↓ 24%
Christou	2008	(both)	31.9%	↓78%

Change in Physiologic Mediators				
Decrease	Increase			
Estradiol	SHBG			
CRP	± IGFBPs			
TNF-α	± IGF-I			
IL-6				
Insulin				
± IGFBPs				
± IGF-I				

Byers T et al. Diab Obes Met 2011 (in press)

Effects of Exercise on Insulin in Breast Cancer

- exercise fairly consistently associated with reduced insulin levels in obese and diabetic individuals without breast cancer
- results inconsistent in breast cancer subjects

	Type of Exercise	Effect on Insulin	
Fairey, Courneya (2003)	Aerobic	No change	p=0.94
Schmitz, Yee (2005)	Weight training	No change	p=0.46
Ligibel (2008)	Mixed weight and aerobic	Reduction	p=0.07
lrwin (2009)	Aerobic	Reduction	p=0.09

Obesity and Breast Cancer Outcomes Conclusions

- Obesity has been associated with adverse breast cancer outcomes
- Several potential biologic mediators of obesity effects in cancer have been identified, some may lead to targeted interventions
- Lifestyle or surgical interventions leading to weight loss and/or enhanced physical activity could potentially reverse these effects

Collaborators

NCI(US)

<u>Clinical</u>	Statistics
Vendy Parulekar	Marguerite Ennis
Karen Gelmon	Bingshu Chen
George Fantus	
Kathy Pritchard	Molecular Biology
A32 Steering Committee	Vuk Stambolic
Saroj Niraula	Ryan Dowling
orraine Lipscombe	
Roanne Segal	Research Staff
	Nicky Hood
Pathology	Samantha Beddows
ois Shepherd	
rance O'Malley	FUNDERS:
Anna Marie Mulligan	<u>CBCRA</u>
Susan Done	<u>CCSRI</u>
lartin Chang	<u>CBCF</u>
	BCRF
	Komen

<u>C</u>

S

R

S

Ν

Thousands of patients who have participated in our studies