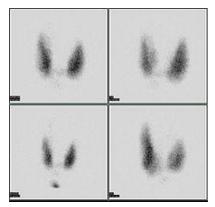
Late Cancer-Related Health Effects in the General Population

Thyroid Cancer

Dr Ausrele Kesminiene

Environment and Radiation Section

International Agency for Research on Cancer Lyon, France

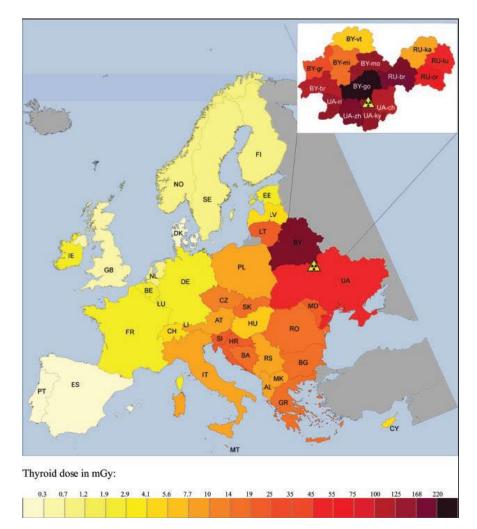

GILBERT W. BEEBE SYMPOSIUM ON 30 YEARS AFTER THE CHERNOBYL ACCIDENT, 1-2 November, 2016 National Academy of Sciences, Washington, DC

outline

- thyroid disease studies for the general population:
 - exposure in childhood and adolescence, including effect modification
 - *exposure in adulthood
- summary of findings
- open questions and...
- future plans

introduction

- first reports on thyroid cancer increase after Chernobyl were met with scepticism because:
 - susceptibility of thyroid gland to internal exposure from radioactive iodine was less established, compared to external radiation exposure
 - main evidence came from studies of medically exposed populations with underlying thyroid conditions and limited data on childhood exposure


introduction (2)

- 2008 UNSCEAR reported 6,848 cases of thyroid cancer diagnosed amongst those under 18 y in 1986 between 1991 and 2005 in the whole of Belarus and Ukraine and in the 4 most affected regions of the Russian Federation
- by 2016, more than 11,000 thyroid cancer cases had been diagnosed in this group http://www.who.int/ionizing_radiation/chernobyl/Chernobyl-update.pdf?ua=1
- It is most likely that a fraction of these is attributable to radioiodine intake in 1986

thyroid doses in children

 average countryspecific thyroid doses from Chernobyl in Europe to children aged 1 y at the time of the accident

Drozdovitch et al, 2006

TC: exposure early in life

- study jointly led by the US NCI, Institute of Endocrinology and Metabolism (IEM), Ukraine & Republican Research Centre for Radiation Medicine and Human Ecology (RRCRM&HE), Belarus
- recent reports from Belarus:
 - Zablotska et al, BJC, 2010 and Cancer, 2015
- recent reports from Ukraine:
 - Brenner et al, EnvHP, 2011
 - Tronko et al, J Radiol Prot 2012
- individuals ≤18y.o. with thyroid radioactivity measured in April-June 1986
 - 38,543 in Belarus
 - subsample of 32,385 in Ukraine

screened cohort study: BelAm & UkrAm

- 4 biennial screening cycles in Ukraine*:
 - ✤13,243 subjects screened in 1st cycle

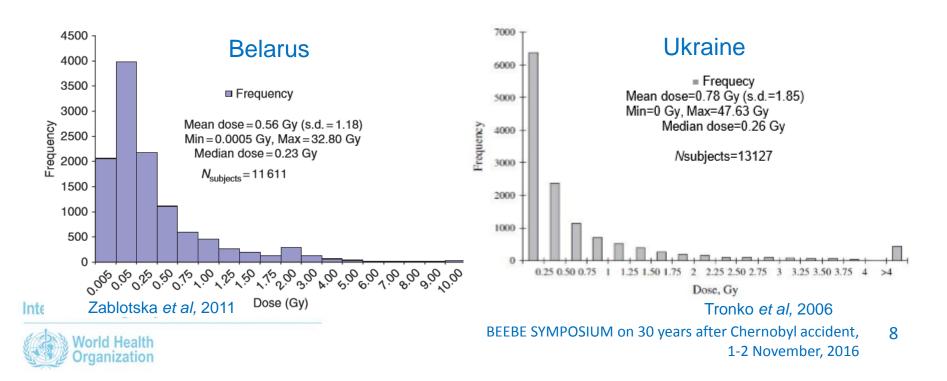
from 93.8% to 76.9% in the next 3 cycles (between 2001 and 2007)

 3 screening cycles in 1997-2008 in Belarus*:

11,644 individuals were screened 1st time during 1997-2000

two more cycles during 2002-04 and 2004-06 (ext up to 2008)

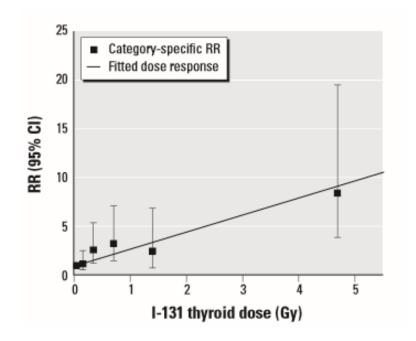
1-2 November. 2016


* 5th cycle completed recently

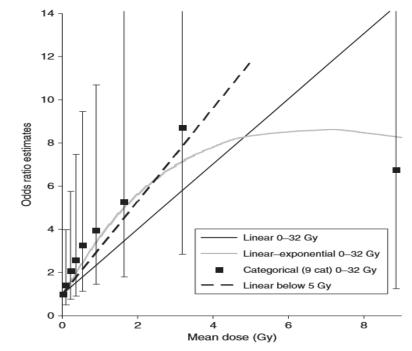
International Agency for Research on Cance**by Belarussian decree persons under 18y are recalled annually BEEBE SYMPOSIUM on 30 years after Chernobyl accident, 7

screened cohort study: BelAm & UkrAm (2)

- individual doses (and uncertainties) estimated based on:
 - thyroid activity measurement
 - individual data on dietary, lifestyle habits and residential history
 - environmental transfer models



TC: dose-response with I-131


Ukraine (Brenner et al, 2011)

Belarus (Zablotska et al, 2010)

ERR/Gy 1.91 (95% CI: 0.43-6.34)

<5Gy: EOR/Gy 2.15 (95% CI: 0.81-5.47)

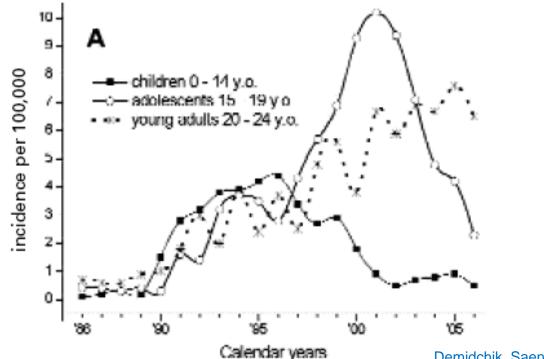
TC: latency

very early onset (first cases appeared only 3 to 4 years after the accident) was unexpected based on existing knowledge from externally exposed populations*

Caution: the first cases demonstrated very clear clinical symptoms, they were not detected by screening

Photo: http://renaissanceresearch.blogspot.fr/2006_04_01_archive.html

TC: effect modifiers


age at exposure and gender

Reference	Ratio ERR/Gy	Age at exposure effect	
	girls/boys		
Cardis <i>et al</i> , 2005	0.9	NA	
	p=0.9		
Kopecky et al, 2006	NA	No monotone trend with increasing age; $p=0.7$	
Tronko <i>et al</i> , 2006	7.5	ERR decreased with increasing age	
	p=0.14	at exposure; <i>p=0.6</i>	
Brenner <i>et al</i> , 2011	2.2	ERR decreased with increasing age	
	p=0.9	at exposure; <i>p=0.4</i>	
Zablotska <i>et al,</i> 2010	3.0	No significant effect of age at	
	<i>p</i> =0.13	exposure; <i>p=0.9</i>	
Ron <i>et al,</i> 1995	2	ERR decreased with increasing age	
	<i>p</i> =0.07	at exposure; <i>p=0.004</i>	
Veiga <i>et al</i> , 2016	0.8	ERR varied significantly with age a	
	<i>p</i> =0.37	exposure; <i>p</i> =0.001	

• effect of gender not clear because most of TC diagnosed at very young age (mean age ATD-11.7 (Demidchik et al 2006))

TC: effect modifiers (2)

risk pattern over time

- Demidchik, Saenko and Yamashita, 2007
- I-131-related risk persisted more than 20 y after exposure, with no evidence of decrease Brenner et al, 2011

International Agency for Research on Cancer

orld Health

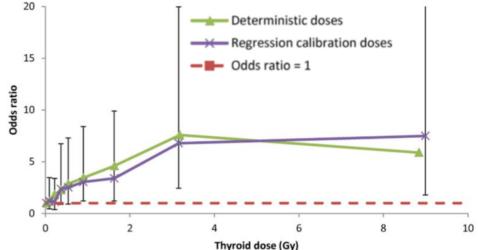
TC: effect modifiers (3)

• iodine deficiency and iodine supplementation

	OR at 1 Gy (95% CI)		
Consumption of potassium iodide	Highest two tertiles of soil iodine	Lowest tertile of soil iodine	
No	3.5 (1.8 to 7.0)	10.8 (5.6 to 20.8)	
Yes	1.1 (0.3 to 3.6)	3.3 (1.0 to 10.6)	

Cardis et al, 2005

 in Belarus, diffuse goitre and thyroid enlargement were modifiers of TC risk (Zablotska *et al*, 2010)
 in Ukraine, data not strong enough to support a modifying effect of iodine deficiency (Brenner *et al*, 2011)
 indicators of past stable iodine intake are difficult to reconstruct

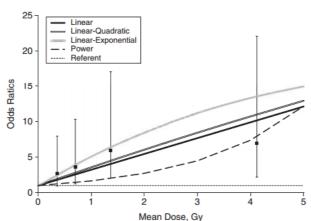


2

TC: role of uncertainties in dose estimates on risk

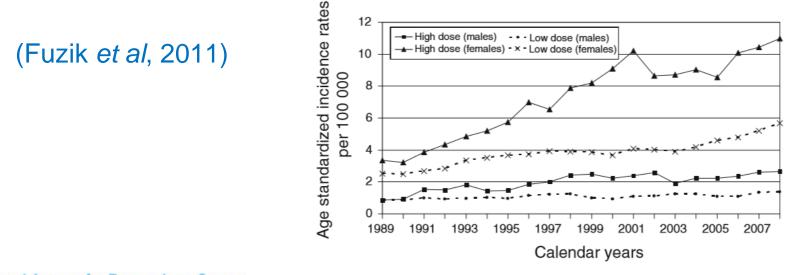
- relatively small contribution of unshared classical dose error
- effects of adjusting for dose error were minimal, resulting in changes to risk estimates:
 - in Ukraine between -11% and +7% (Little et al, 2014)
 - In Belarus between -23% and -2% (depending on the method)
 (Little *et al*, 2015)
- new effort to characterise uncertainties in doses and their role on risk estimate in the IARC c-c study

International Agency for Research on Cancer


BEEBE SYMPOSIUM on 30 years after Chernobyl accident, 14 1-2 November, 2016

non-malignant thyroid diseases BelAm and UkrAm studies

• follicular adenoma:


- in Ukraine (Zablotska et al, 2008) n=23:
 - ✓ ERR/Gy 2.07 (95%CI: 0.28, 10.31)
 - risk higher in women
- ✤ in Belarus (Zablotska et al, 2015) n=38: [#]/g
 - ✓ ERR/Gy 2.22 (95% CI: 0.41, 13.1)
 - ✓ similar in males and females
- hyperthyroidism (Hatch et al, 2010):
 - In Ukraine: n=76; no dose-response relationship
- autoimmune thyroiditis (AIT) (Tronko et al, 2008):
 - in Ukraine: no dose-response relationship for AIT; significant association between elevated ATPO levels and ¹³¹I

TC: exposure in adulthood

- recent studies of residents of contaminated territories
 >18 y at the time of accident:
 - cological study in Ukraine compared TC incidence rates between high and low exposure regions in 1989-2007 (Fuzik et al, 2011)
 - incidence rate ratios in females was significantly higher in high exposure regions in those exposed at ages of 20–49 years, in males, this tendency was less clear

TC: exposure in adulthood (2)

- in Russia (Ivanov et al, 2012):
 - TC incidence in the contaminated territories of Bryansk, Kaluga, Oryol and Tula evaluated in 1991-2008
 - no dose-response relationship found in exposed adults based on average residential doses

• caution:

- possible surveillance bias
- no individual dosimetry, doses intend to be low
- In Finland (Auvinen et al, 2013):
 - cancer incidence data obtained for 1988-2007 for the cohort divided into 4 exposure categories (the lowest <0.1 mSv and the highest 0.5 mSv)</p>
 - weak, non-significant positive relation was observed in females

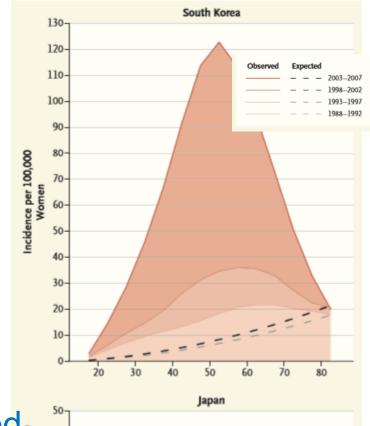
Internation No convincing evidence of effect of exposure as an adult

TC: risks after exposure in childhood and adolescence summary of most informative analytical studies

Study	Ascertainment period	Number of cases	Number of controls/ size of study population/PY	ERR* at 1 Gy (95% CI)
Chernobyl studies				
Case-control studies				
Astakhova <i>et al</i> , 1998	1988-1992	107	214	OR >=1 Gy vs. <0.3Gy: 5.0 (1.5-16.7) to 5.8 (2.0-17.3)
Kopecky <i>et al</i> , 2006	1986-1998	66	132	48.7 (4.8-1,151)
Cardis <i>et al</i> , 2005	1992-1998	276	1,300	4.5 (2.1-8.5) to 7.4 (3.1-16.3)
Screened cohort study				
Tronko <i>et al</i> , 2006	1998-2000	45	13,127	5.25 (1.7-25.5)
Brenner <i>et al,</i> 2011	2001-2007	65	12,514	1.91 (0.43-6.34)
Zablotska <i>et al,</i> 2010	1996-2004	133 85	11,611	3.16 (1.49 – 6.95) 2.15 (0.81 - 5.47)
Exposure in utero				
Hatch <i>et al, 2009</i>	2003-2006	7	2,582	11.7 (NE – 1,982)
External exposures -	Pooled analyses			
Ron <i>et al.</i> 1995 Veiga <i>et al.</i> 2016		458 927	1.400.000 PY 3.400.000 PY	7.7 (2.1-28.7) 5.5 (4.1–7.5)

TC and screening

- effect of large scale screening efforts in contaminated areas:
 - Absolute rate of thyroid cancer increases in a screened population
 - ERR estimate can be biased upward, if there is a correlation between thyroid dose and frequency of screening
 - BelAm and UkrAm cohort studies provided an estimate of the risk where confounding effect of screening is unlikely (all subjects were screened, regardless of dose)


• however:

- ? whether the detection of additional small thyroid cancers affects the excess radiation risks
- ? whether these small tumours are induced by radiation to the same extent as large tumours

worldwide: rise in thyroid cancer incidence

- estimated number of cases attributable to increased thyroid-gland surveillance:
 - in women:
 - ✓ 90% in South Korea;
 - ✓ 50% in Japan
 - in men:
 - ✓ 70% in South Korea;
 - ✓ less than 25% in Japan

80

"careful data interpretation needed in the context of screening after radiation exposure"

Vaccarella et al, 2016

International Agency for Research on Cancer

BEEBE SYMPOSIUM on 30 years after Chernobyl accident,201-2 November, 2016

40

30-20-

10

from Chernobyl to Fukushima

SHAMISEN Nuclear Emergency Situations Improvement of Medical and Health Surveillance

 subtask 1.2: Critical review of long-term medical surveillance programmes

to provide a set of lessons learned from medical surveillance on physical and mental health of populations exposed to fallout from the Chernobyl and Fukushima accidents

- recommendations for setting up criteria to:
 - justify long-term medical surveillance programmes of affected populations
 - evaluate their effectiveness

orld Healt

summary

- risks following exposure to I-131 are somewhat smaller, but compatible with estimates from external irradiation
- latency period less than 5 years
- sensitivity to I-131 in children is much grater compared to adults
- I-131-related risk persists nearly 3 decades after Chernobyl accident
- most of observed thyroid malignancies are papillary carcinomas

International Agency for Research on Cancer

22

there is more to be learned...

- about the impact of:
 - gender,
 - age at exposure, including in adulthood,
 - stable iodine intake
 - increased surveillance
 - uncertainties in doses on risk estimates...
- there is a need for studies to better understand natural history of thyroid cancer (progression and regression of thyroid tumours over life span)
- importance of international cooperation in science is explicitly recognised and has been proven after Chernobyl

- development of a long-term research programme with agreed research priorities
- Chernobyl Research Programme highlights:
 - stablishment of Chernobyl Life Span cohort
 - convening a multinational body International Chernobyl Research Committee
 - conducting prioritized multidisciplinary studies

more info: http://co-cher.iarc.fr/

ДИТЯТКИ

ЧОРНОБИЛЬ МАКАРІВКА

СУКАЧІ

UA

NATIONALGEOGRAPHIC.COM

Photograph by James L. Stanfield © 2005 National Geographic Society, All rights reserved.

