Electric Grid Vulnerability to EMP & GMD

EMP & GMD: Perspectives on Current Status and Future Concerns

The Nation has experienced a Several Decade Long Failure to Understand how Risk has Migrated into our Electric Grid Infrastructures from GMD & EMP Threats

- Transmission Network Design Evolutions to Higher kV Rating and Single Phase Transformers have unknowingly Escalated GMD & EMP-E3 Risks and Potential Impacts
- Similar Evolution in Electric Grid for Relays, Control, Communications and IT go Electronic-Based Systems have made these important sub-systems much more vulnerable to EMP-E1
- Un-Recognized Systemic Risk Changes Unchecked by Rational Design Code

US Government Report Findings

Congressional EMP Commission, FERC/DOE, National Academy of Sciences

- ✓ Severe Storms ~4-10 Times
 Larger (~5000 nT/min) & 20-40
 V/km Geo-Electric Fields
- Potential for GIC Flows ->1000
 Amps/phase
- ✓ Potential for Grid Blackouts of Unprecedented Scale
- ? Damage Issue Questions
 - ? Transformers
 - ? Generators
 - ? Circuit Breakers
 - ? Arresters
 - SCADA, Controls & Sensitive Customers

EMP E1 (Fast Pulse) – Threat Perspectives

Often Posted around sensitive IT and Control Equipment Cell Phone Environment which produces 1 to 3 V/m at Single Frequency

EMP E1 Environment footprint over large geographic laydown can have **50,000 V/m over Broad Spectrum**

Inside a Substation Control House, EMS Center or Generator Distributed Controls Input Signals to Relays and SCADA Devices that can exceed 100,000 Volts with Multiple Widespread Permanent Damage Storm Analysis Consultants

EMP E1 – Threat Perspectives Rethinking Substation Control House using Shielding Concrete

- Shielded Concrete is an RF-Absorptive medium
- Easiest Means to Create 6-Sided Protected Control House Building with 60-80 dB Attenuation
- Shielding Concrete/Shotcrete can offer substantial cost savings for EMP shielding (~40% saving as compared with envelope + metal shielding cost)
- Tortuous Path/Labyrinth Entryway (Personnel/Vents) (because RF-Absorptive much simpler and less expensive than RF doors and vents)
- Multi-Threat (blast/ballistic/EMP/IEMI/tornado) in a single envelope

Threat Perspectives and Priorities to Harden Grid

- Given Sufficient Time the Reoccurrence of Large Storm Event is a Certainty Only with Much more Serious Consequences
- EMP Vulnerabilities tend to Invite and Reward Attack
- Many Options exist to Harden with various Costs & Efficiencies
- Public Lifeline Considerations should be initial focus Restore Functional Water/Sewage, Food, Transportation, Communication at minimal levels Post-Event
- Partial Restoration of Regional Power Grids is necessary to Support Lifeline Services for Public (10-30% restoration as a starting point)