

School of Medicine

Sleep and Circadian Rhythms in Alzheimer Disease

Erik S. Musiek, MD, PhD

Charlotte & Paul Hagemann Professor of Neurology Co-Director, Center On Biological Rhythms And Sleep (COBRAS) Washington University School of Medicine St. Louis, MO, USA

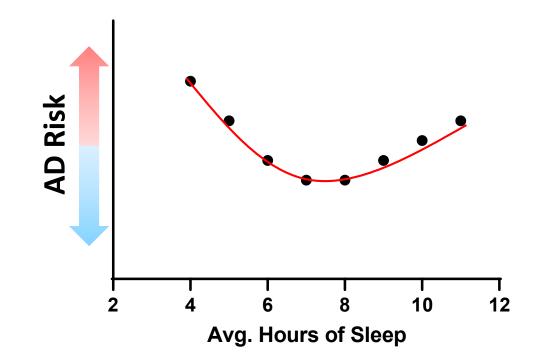
National Academies "Exploring Sleep Disturbance in Central Nervous System Disorders" Workshop 2022

Conflicts of Interest/Disclosures

- Erik Musiek has received research funding from Eisai Pharmaceuticals through a sponsored research agreement with Washington University.
- No personal financial or other disclosures.

Sleep and circadian function is disrupted in symptomatic AD dementia

- Poor sleep efficiency
- Increased napping
- Decreased slow-wave sleep (NREM, <1hz)
- Decreased REM sleep
- Fragmented sleep-wake pattern
- Phase delay (~4 hrs)



	Year 1			Year 2		
(A) 10			(E)			co
1 (D) _	ad som att sod so and based defaust of a set of the source of the source of the source of the based of the source of the based of the source of the based of the source of the source based of the source of the source based of the source of the source based of the source of the sourc		(H)	4		
10						AI
20	4 44				<u>.</u>	
0	24	48	0	24	48	
		Tim	e (h)			

Source: Scientific American, May 2019

Sleep duration and AD risk: U-shaped curve

- Short or long sleep are associated with increased AD risk.
- Most studies use self-reported sleep duration information.
- Few have AD biomarkers to confirm diagnosis or preclinical AD status.

Sabia S et al. Nat Comm, 2021

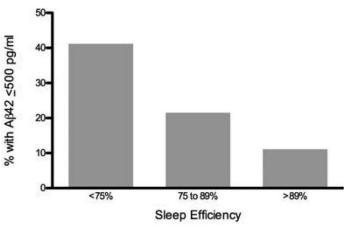
Westwood AJ et al. *Neurology*, 2017 Lutsey PL et al, *Alzheimer Dement*, 2017 Robbin R et al, *Aging*, 2021

Mid-life sleep influences dementia risk

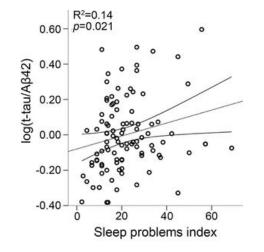
nature communications

Article | Open Access | Published: 20 April 2021

Association of sleep duration in middle and old age with incidence of dementia

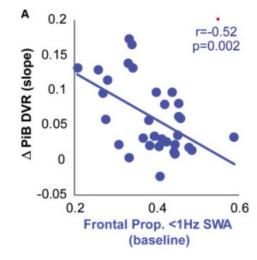

Séverine Sabia ⊠, Aurore Fayosse, Julien Dumurgier, Vincent T. van Hees, Claire Paquet, Andrew Sommerlad, Mika Kivimäki, Aline Dugravot & Archana Singh-Manoux

- Extremely long followup (25+ years) makes preclinical AD at first sleep assessment unlikely
- Self-reported sleep, no biomarkers


	N cases/N total	Incidence rate per 1000 persons-years	Model 1: adjusted for sociodemographic v	
			HR (95%CI)	<i>P</i> value ^d
Sleep duration at age 50 ^e	521/7959			
Short: ≤6 h	211/3149	2.8 (2.4–3.2)	1.28 (1.06–1.55)	0.01
Normal: 7 h	219/3624	2.4 (2.1–2.7)	1 (ref.)	
Long: ≥8 h	91/1186	3.0 (2.4–3.7)	1.25 (0.98–1.59)	0.08
Sleep duration at age 60 ^e	409/7164			
Short: ≤6 h	192/2759	4.7 (4.0–5.4)	1.48 (1.19–1.84)	<0.001
Normal: 7 h	142/2988	3.2 (2.7–3.7)	1 (ref.)	
Long: ≥8 h	75/1417	3.6 (2.8–4.4)	1.15 (0.87–1.52)	0.33

Preclinical AD pathology associated with sleep changes

Cognitively normal, CSF biomarkers, actigraphy


Cognitively normal, CSF biomarkers, sleep questionnaire

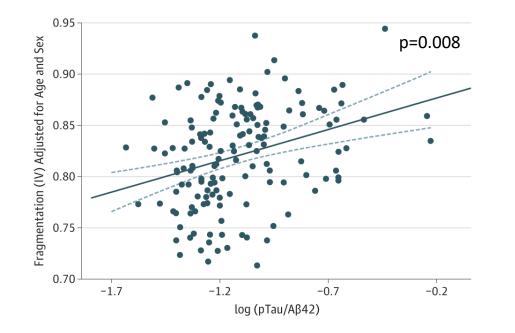
Ju YE et al, JAMA *Neurol*, 2013

Sprecher KE et al. Neurology, 2017

Cognitively normal, PSG, Amyloid PET imaging

Winer J et al. Curr Biol, 2020

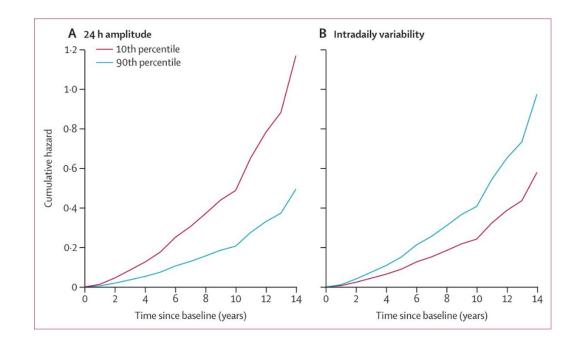
In general, preclinical AD pathology (CSF or PET biomarker+) is associated with increased sleep latency, sleep fragmentation, increased WASO, decreased sleep efficiency, increased naps


Ettore E et al., *Sleep*, 2019 Brown BM et al., *Sleep*, 2016 Branger P et al. *Neurobiol Aging, 2016* Insel P, *JAMA Open,* 2021 Spira AP, *Sleep*, 2018

Circadian dysfunction precedes cognitive symptoms in AD

JAMA Neurology | Original Investigation

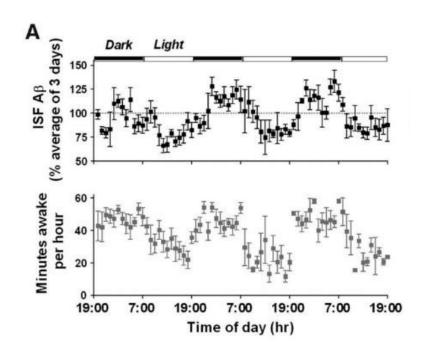
Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease

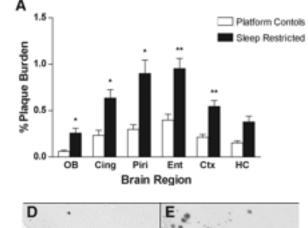

Erik S. Musiek, MD, PhD; Meghana Bhimasani, BS; Margaret A. Zangrilli; John C. Morris, MD; David M. Holtzman, MD; Yo-El S. Ju, MD

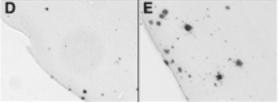
THE LANCET Healthy Longevity

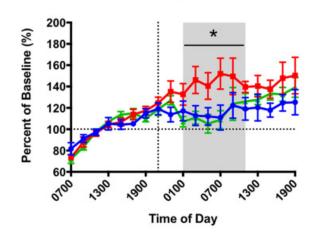
Circadian disturbances in Alzheimer's disease progression: a prospective observational cohort study of community-based older adults

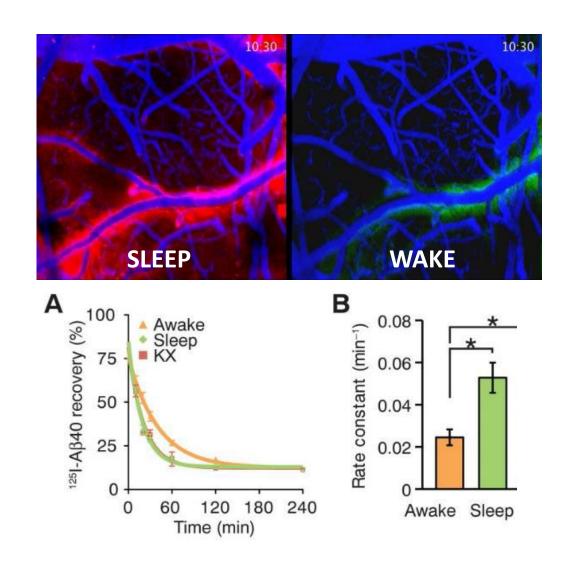
Peng Li, Lei Gao, Arlen Gaba, Lei Yu, Longchang Cui, Wenqing Fan, Andrew S P Lim, David A Bennett, Aron S Buchman, Kun Hu

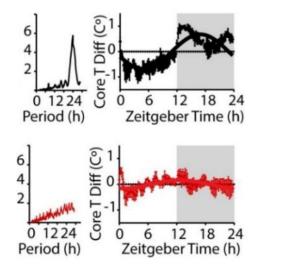

Li P et al. Lancet Healthy Longev, 2020

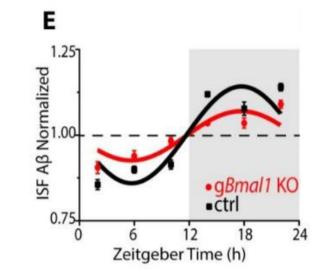

Sleep regulates Amyloid-ß levels in mouse brain

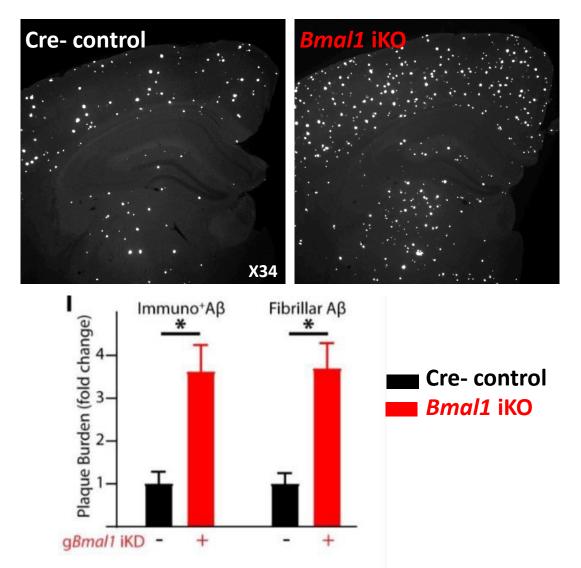

- Diurnal variation in Aβ levels in brain interstitial fluid and human CSF.
- Sleep deprivation increased amyloid plaque pathology in mice and increases Aβ₄₂ in CSF in humans


Kang JE et al, *Science*, 2009 Lucey BP et al, *Ann Neurol*, 2018 See also Ooms S et al, *JAMA Neurol*, 2017



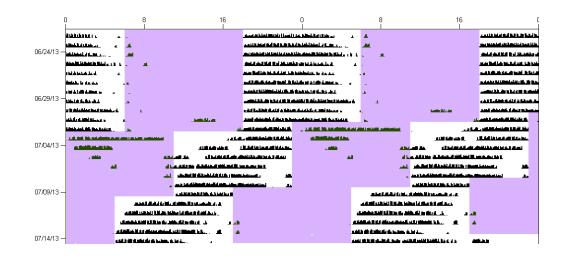

Sleep and glymphatic clearance of toxic proteins

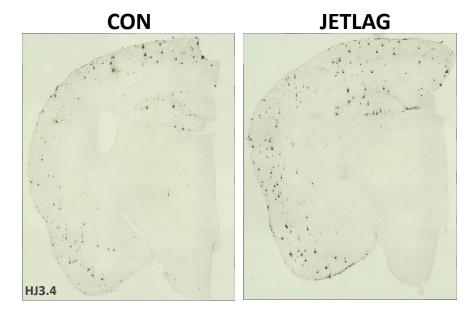

- Increased perivascular fluid flow in sleep mice.
 - "Glymphatic system"
- Sleep accelerates clearance of labelled Aβ injected into striatum.
- Early imaging data from human suggests a similar mechanism.
- May also act on tau, α -synuclein

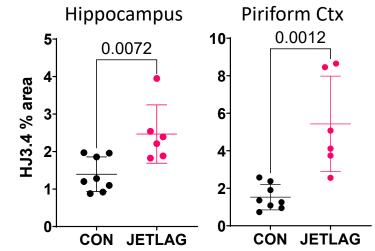


Bmal1 deletion disrupts ISF Aβ rhythms and increases amyloid plaques

 Global deletion of the core clock gene Bmal1 renders APP/PS1 mice arrhythmic and increased amyloid plaque

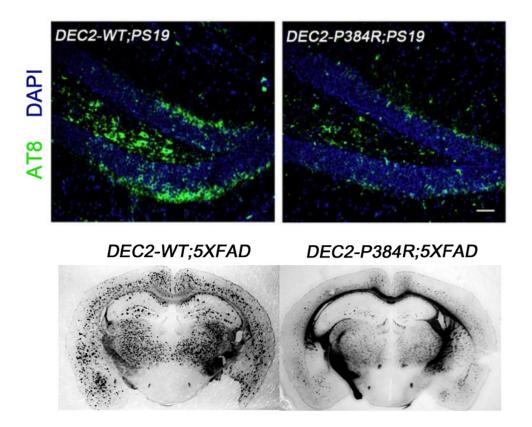




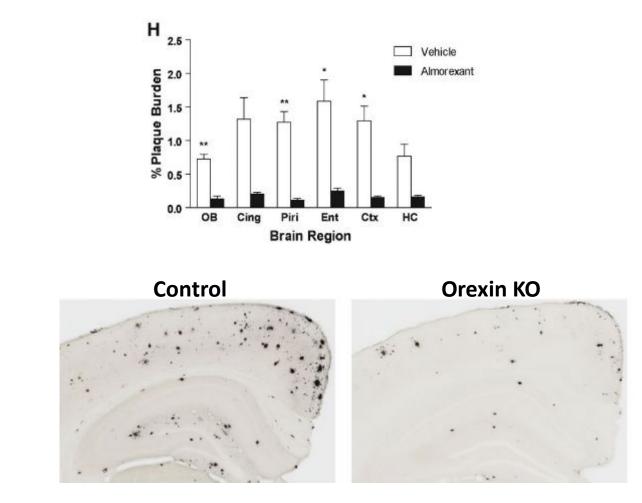

Kress GJ et. al, J Exp Med, 2018

Circadian desynchrony increases amyloid plaques

- APP/PS1dE9 mice
- Chronic "jetlag" paradigm
 - 6hr weekly light phase advance (earlier lights-on)
 - Jetlag from 3-6 months of age



Ashish Sharma, unpublished


Short-sleep mutations reduce AD pathology

- Short-sleep mutations in humans reduce AD pathology in mice (Fu and Ptacek labs)
- *DEC2* (*BHLHE41*) is a circadian gene- mutation causes short sleep and reduced AD pathology.
- Suggests unique clock-sleep interplay in AD

Orexin inhibition mitigates plaque accumulation

- Orexin Antagonists
 - Suvorexant, Lemborexant, daridorexant FDA approved for insomnia
- In mice, blocking orexin function with a drug or deleting the orexin gene increases sleep, prevents amyloid plaque formation
- Human AD patients have altered CSF orexin levels
 - See Ligouri C et al, *JAMA Neurol*, 2014; Osorio RS, *Sleep*, 2016.

Kang et al, Science 2009; Roh et al, J Exp Med, 2014

Future Directions

- Chicken or egg: Does sleep/circadian dysfunction precede preclinical AD pathology, or vice versa?
- What aspect of sleep/circadian dysfunction is most detrimental? Circadian fragmentation? SWS loss? REM loss? OSA? Is there a useful biomarker here?
- Mechanisms: Aβ/tau production vs. clearance? Effects on inflammatory/glial/immune systems?
- Therapies: Sleep drugs as preventative agents for AD? Development of clock-targeted drugs? Targeting downstream pathways ("sleep in a pill").