Forecasting the future supply of pediatric subspecialists in the United States from 2020-2040

Colin Orr, MD, MPH, Assistant Professor Division of General Pediatrics and Adolescent Medicine The University of North Carolina School of Medicine

NAM: The Pediatric Subspecialty Workforce and Its Impact on Child Health and Well-Being November 2, 2022

Funding and Disclosures

This work is supported in full by the American Board of Pediatrics Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the American Board of Pediatrics or the American Board of Pediatrics Foundation

THE AMERICAN BOARD of PEDIATRICS

This presentation in one slide

- The model significantly improves on previous models
 - supply projections for 14 subspecialties at subnational level
 - better data, stronger methods, collaboration with ABP research staff, and significant input from stakeholders
 - an interactive data visualization that allows users to customize the findings they want to see by subspecialty and region
- Without model, story of pediatric subspecialty growth in aggregate is one of growth...not necessarily the case
- Future is unknown, but model scenarios allow users to see forecasts under different assumptions
- Dissemination of model findings will target different audiences

Subspecialties included in the supply model

- ✓Adolescent Medicine
- ✓ Pediatric Cardiology
- ✓ Child Abuse Pediatrics
- ✓ Pediatric Critical Care Medicine
- ✓ Developmental-Behavioral Pediatrics
- ✓ Pediatric Emergency Medicine
- ✓ Pediatric
 Endocrinology

- ✓ Pediatric
 Gastroenterology
- ✓ Pediatric Hematology-Oncology
- ✓ Ped Infectious Disease
- ✓ Neonatal-Perinatal
- ✓ Pediatric Nephrology
- ✓ Pediatric Pulmonology
- ✓ Pediatric Rheumatology
- X Pediatric Hospital Medicine

The model does not include pediatric hospital medicine as historical data on the number of certified pediatricians is not available.

THE CECIL G. SHEPS CENTER FOR

HEALTH SERVICES RESEARCH

Digging a little deeper into model components

- Model outputs display the forecasts for each specialty by:
 - Headcount and PCT (self-reported proportion of time spent in direct/consultative inpatient/outpatient clinical care)
 - Three levels of geography
 - National
 - 4 Census Regions
 - 9 Census Divisions

United States Census Regions and Divisions

Model forecasts behavior of individual physicians along multiple dimensions of their career

Fraher, E., Knapton, A. (2021). Workforce Planning in a Rapidly Changing Healthcare System. In C.J. Sampson, B.J Fried (Ed.). Human Resources in Healthcare (pp. 429-456). Health Administration Press.

Model accounts for individual characteristics that affect physician behavior

Physician Characteristics	Example of how used in the model
Subspecialty	Modeling supply at subspecialty level
Location	Modeling supply at subnational level
Age	Predictor of workforce exit and percent time in clinical care
Gender	Predictor of workforce exit and percent time in clinical care
Race/ethnicity	Not in current model but able to be added in the future as data are more complete

What makes this model different and better than past models

This model improves on past models because:

- Has separate supply forecasts for the 14 subspecialties
- Models supply at the sub-national level
- Accounts for physician movement after training and during career
- Utilized wealth of ABP data on certified subspecialists
- Displays model findings in customizable, interactive, web-based visualization
- Developed with significant stakeholder input
- Designed to educate and engage stakeholders
- Captures headcount as well as clinical time

DUNC

What did we find?

- Subspecialty Differences
- Geographic Differences
- Importance of Diffusion

Without the model, this is the national supply projection of all pediatricians

Model Parameter Summary

	Subspecialty	Total or Subspecialists per 100k Children	Head Count or Percent Clinical Time	Region/Division	Scenario	2020 - 2040 (% Change)
0	All Pediatric Subspecialties (Combined)	Total	Head Count	United States	Baseline	23,289 - 39,252.93 (+69%)

Interactive Projections Based on Selected Model Parameters

THE CECIL G. SHEPS CENTER FOR HEALTH SERVICES

RESEARCH

<u><u>Î</u>UNC</u>

But subspecialties are different sizes and are forecast to grow at different rates

From 2020-2040

Fastest percentage growth: pediatric critical care (105%), pediatric gastroenterology (97%) Slowest percentage growth: pediatric child abuse (24%), adolescent medicine (27%)

And projections vary by subspecialty at the subnational level.

Example: Adolescent Medicine

oderi	Parameter Su	mmary		B	<i>.</i> .	2020 2040
	Subspeciality	100k Children	Head Count or Percent Clinical Time	Region/Division	Scenario	2020 - 2040 (% Change)
0	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	South Atlantic (Census Division)	Baseline	0.35 - 0.5 (+45%)
2	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	Pacific (Census Division)	Baseline	0.42 - 0.6 (+43%
3	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	New England (Census Division)	Baseline	1.16 - 1.53 (+329
0	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	East North Central (Census Division)	Baseline	0.45 - 0.57 (+289
5	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	West South Central (Census Division)	Baseline	0.2 - 0.2 (+1%)
6	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	East South Central (Census Division)	Baseline	0.24 - 0.23 (-4%)
0	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	West North Central (Census Division)	Baseline	0.24 - 0.21 (-149
8	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	Mountain (Census Division)	Baseline	0.28 - 0.23 (-159
9	Adolescent Medicine	Subspecialists per 100k Children	Percent Clinical Time	Middle Atlantic (Census Division)	Baseline	0.89 - 0.7 (-21%)
eract	ive Projection	ns Based on Selected Mo	odel Parameters			
L ———						
2						
в ——						
6						

Physicians Percent Clinical Time, Subspecialists per 100k Children

0.2

0 2020

2022

2024

2026

2028

2030

2032

2034

2040

2038

2036

Adolescent Medicine Programs and Fellows per 1 million children

Training Programs and Incoming Fellows for Adolescent Medicine, 2019

Census Division, Subspecialist Fellows per 1 Million Children

Subspecialists per 100k Children

Model helps users identify where supply projections may not align with population growth per subspecialty

Adolescent Medicine Supply by Census Division

Population Growth by Census Division

- West S Central +1%
- Mountain -15%

- West S Central (28%)
- Mountain (20%)

Diffusion: Model accounts for physician moves during their career

Fraher, E., Knapton, A. (2021). Workforce Planning in a Rapidly Changing Healthcare System. In C.J. Sampson, B.J Fried (Ed.). Human Resources in Healthcare (pp. 429-456). Health Administration Press.

Model accounts for pediatric subspecialist moves

Model accounts for diffusion:

- 1. where fellows move from their training location to their first practice setting after completing subspecialty training
- 2. the annual probability that subspecialists move between census regions and census divisions
- 3. the probability that someone who left the country returns to practice in the United States

Diffusion can make significant impact on regional supply, especially in small subspecialties in regions with few subspecialists

Model Parameter Summary

		Subspecialty	Total or Subspecialists per 100k Children	Head Count or Percent Clinical Time	Region/Division	Scenario	2020 - 2040 (% Change)
×	1	All Pediatric Subspecialties (Combined)	Total	Head Count	Mountain (Census Division)	Baseline with no gen Diff 100 Reps	1,404 - 2,267.2 (+61%)
*	2	All Pediatric Subspecialties (Combined)	Total	Head Count	Mountain (Census Division)	Baseline with gen diff 100 Reps	1,404 - 2,506.5 (+79%)
×	3	All Pediatric Subspecialties (Combined)	Total	Head Count	Mountain (Census Division)	Baseline with gen diff & OOS 100 Reps	1,410.8 - 2,650.96 (+88%)

Interactive Projections Based on Selected Model Parameters

Model forecasts headcount and proportion of time in clinical care

Fraher, E., Knapton, A. (2021). Workforce Planning in a Rapidly Changing Healthcare System. In C.J. Sampson, B.J Fried (Ed.). Human Resources in Healthcare (pp. 429-456). Health Administration Press.

Defining proportion of time spent in clinical care (PCT)

Derived based on questions included in MOC surveys from 2009 to 2019

- Q1: On average, over the past 6 months, approximately how many hours did you work each week?
- Q2: What proportion of your total professional time is spent performing each of the following tasks?
 - a) Direct and/or consultative inpatient and outpatient care, including patient billing and charting (with or without trainees)
 - b) Administration
 - c) Research
 - d) Medical Education
 - e) Quality improvement activities
 - f) Other

Hours in clinical care =

Q1 (total hours) * Q2a (proportion of time in direct/indirect care)

Headcount and PCT

Model Parameter Summary

	Subspecialty	Total or Subspecialists per 100k Children	Head Count or Percent Clinical Time	Region/Division	Scenario	2020 - 2040 (% Change)
1	All Pediatric Subspecialties (Combined)	Total	Head Count	United States	Baseline	23,289 - 39,252.93 (+69%)
2	All Pediatric Subspecialties (Combined)	Total	Percent Clinical Time	United States	Baseline	14,343.88 - 24,071.21 (+68%)

Projections Based on Selected Model Parameters

What if things change?

- Baseline model uses historical data to forecast future
- However, changes in workforce participation patterns, models of care, number of fellows in training programs, the economy, world-wide pandemics, and other factors will affect future supply
- To account for potential but unknown changes, we create "what if" scenarios that show alternative outcomes to the baseline model
- We worked with range of stakeholders to develop 8 scenarios

MUNC

Scenarios Modeled

2 scenarios model changes to fellows (increase, decrease)

2 scenarios model changes to PCT (increase, decrease)

2 scenarios model different types of early exit

THE CECIL G. SHEPS CENTER FOR HEALTH SERVICES RESEARCH 2 scenarios represent combinations of the singular scenarios (best case, worst case)

Early Exit Scenarios

		Subspecialty	Total or Subspecialists per 100k Children	Head Count or Percent Clinical Time	Region/Division	Scenario	2020 - 2040 (% Change)
×	1	All Pediatric Subspecialties (Combined)	Total	Head Count	United States	Baseline	23,289 - 39,252.93 (+69%)
×	2	All Pediatric Subspecialties (Combined)	Total	Head Count	United States	Increased Level of Exit at All Ages	23,289 - 39,248.88 (+69%)
×	3	All Pediatric Subspecialties (Combined)	Total	Head Count	United States	Burnout: Increased Level of Exit in Mid-Career	23,289 - 39,121.57 (+68%)

If all subspecialist exited 5 years early for 3 years, short term influence is sizeable (orange line), but long-term influence is small

If mid-career folks (10-15 years) leaving is increased to 10-15% according to 24 literature, influence is small

DUNC

Contact Information

Sheps Health Workforce Modeling Team

Program on Health Workforce Research and Policy

Go.unc.edu/Workforce

nchealthworkforce.unc.edu