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Motivation

• In recent decades, many trade researchers have exploited customs
records to study:

• Firm-level trade dynamics
• market entry and exit
• market penetration, customer accumulation

• Patterns of technology diffusion
• Study international business networks, GVCs

• This work relies heavily on micro patterns in the data
• Firm-to-firm connections and durations of relationships in
international markets

• Firm-to-firm shipment frequencies, product clasifications, and
values.

• But how accurately do the data describe these phenomena?



This paper

• Our objective: contribute to a small literature assessing the
reliability of these micro features of the data

• Compare export records generated by shipments leaving Colombia
to the import records generated by the same shipments when they
enter the U.S. as imports.

• Begin with aggregates
• Go down to HS2 industry
• Go down to firm to firm
• Then down to transaction by transaction

• Consider alternative explanations for discrepancies and implications
for research.

• Finish with brief discussion of scope for improvements in tracking
records.
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Related literature

• Record matching: massive literature; Christen’s (2012) book
provides nice overview

• LFTTD: Bernard et al. (2009), Barresse et al. (2017), Kamal and
Ouyang (2020), Kamal and Monarch (2017)

• Trade reconciliation studies: U.S. Census (1996); Orsini and dos
Santos (2015); U.S. Census (2012); Fisman and Wei (2004); Mishra
et al. (2008); Stoyanov (2012); Ferrantino et al. (2012); 2008
Javorcik and Narciso (2017); Kellenberg and Levinson (2019)

• Studies using matched customs records (very incomplete list):
Eaton et al. (2008,2014); Blum et al. (2010, 2018); Bernard and
Dhingra (2015); Dragusanu (2014); Kamal and Sundaram (2014);
Sugita et al. (2019); Dragusanu (2014); Eaton et al (2017);
Monarch and Schmidt-Eisenlohr (2017); Bernard et al. (2018a,
2018b); Carballo et al (2018); and Monarch (2019); Helper and
Munasib (2021)



Offi cial aggregates
Colombian Exports (FOB) to the U.S



Are discrepancies concentrated in a few industries?
Consider 3 largest HS2 categories, by year

GRAY: ceramic products; ORANGE: apparel not knitted; BLUE: knitted
apparel



A mismatch in transactions or sales per transaction?

• Not uncommon for U.S. importers to split apart transactions for
administrative purposes (U.S. Census Bureau experts)

• LFTTD-CO records imply about 8 percent more transactions than
the DIAN data.

• But LFTTD-CO also reports 12 percent higher value, so more
transactions and larger shipment sizes recorded by U.S.

• Not just a matter of shipments generating multiple records in one
country but not the other.



Interpreting the patterns

• Excess of transactions in LFTTD over transactions in DIAN can’t
just be a record matching problem.

• Is the discrepancy caused by entrepot trade?
• Country of origin (CO) should differ from shipping country
(CS) when entrepot trade occurs.

• Both databases should be based on CO concept, but there’s
some room for slippage.

• exporter reports "last known destination"; may not know
true destination.

• importer may not know country of origin.
• lots of Colombian trade goes through Panama
• "[T]he majority of trade—80 percent—is shipped indirectly.
. ." Ganipati et al. (2021)



A reflection of Entrepot Trade?

• Entrepot trade may be getting more important, still, it doesn’t
explain growing gap in U.S./Colombia aggregate trade series details



Are the gaps especially big?

• 4-7 percent for Australia (U.S. Census, 1996)
• 11-17 percent for Brazil (Orsini and dos Santos, 2015)
• 22-48 percent for China (U.S. Census, 2012).
• wide range in 11 year Comtrade panel,126 countries:

source: Kellenberg and Levinson, 2019



Correlates of discrepancies

• Tariffs (Fisman and Wei, 2004; Mishra et al., 2008; Stoyanov,
2012; Ferrantino et al., 2012; Kellenberg and Levinson, 2019)

• Colombia-U.S. FTA in 2012 may have reduced incentives in
U.S. to understate imports.

• But the gap didn’t close after 2012, it grew.

• Domestic profit taxes (which create incentives to overstate the
value of intermediate inputs)

• Preferential trade agreements (which reduce incentives for tariff
avoidance when importing from partner countries)

• Inflation (which proxies for incentives to avoid capital controls)

• Corruption and auditing standards (Javorcik and Narciso, 2017;
Kellenberg and Levinson, 2019).



Now to our focus: micro examination of misreporting

• Do customs records consistently characterize firm-to-firm trading
patterns?

• Who trades with whom?
• Within particular buyer-seller relationships, how well to
shipment records match up?

• Are reporting issues concentrated among particular types of firms?

• Implications for studies that use these data.



Matching importers and exporters

• Longitudinal Firm Trade Transactions Database (LFTTD)
• Employer Identification Number (EIN)
• EIN can be used to retrieve importing firms’and address from
Business Register

• Colombia’s National Directorate of Customs and Taxes (DIAN)
• includes tax identification number (NIT) of exporter
• includes name and address of importer



Identifying trading partners

• Trading partner matching strategy.
• we’ll use name and address matching to mimimize loss of
information.

• will also briefly examine properties of a psuedo MID
constructed from Colombian data

• Once this is done, we’ll try to link the individual transactions
reported by each pair of trading partners



Two-stage linking strategy

• Preliminary data cleaning
• Using code that created the LFTTD, clean records to
standardize and reduce noise due to recording errors

• First stage: firm matching details

• Block on zip code or state to reduce dimensionality of the
pairwise comparison problem.

• 3 rounds of exact greedy matching on names and addresses;
• 3 rounds of fuzzy greedy matching on names and addresses
• outcome: list of importer-exporter pairs, each agent lists the
other as a trading partner within a common time window, up
to noise

• Second stage: transaction matching: details

• Block on exporter-importer pairs
• Use transaction info. (HS2, shipment value, date) to link
transactions across datasets.

• outcome: for each pair of trading partners, a list of
transactions they have recorded in a roughly consistent way



Trading partner matching results

LFTTD DIAN
No. Colombian exporters identified 13,500 7,281
No. U.S. importers identified 9,400 18,194∗

Matched no. importing firms 2,500 2,500

Matched firms, total no. transactions 259,000 324,707
(72.9% LFTTD) (95% DIAN)

Matched firms, FOB exports ($USM) 18,430 19,268
(84.8% LFTTD) (97.3% DIAN)

∗Based on psuedo MID constructed from importer info. in DIAN.

• Matched firms account for most trade, but most firms not matched

• Almost twice as many exporters identified by MID than actually
appear in DIAN; similar pattern using psuedo-MID on the DIAN
data. (See also Kamal and Monarch, 2018)



Transaction matching results

LFTTD DIAN
level %LFFTD level %DIAN

# trans. matched 97,000 27.3% 97,000 28.4%
FOB value, matched trans. 10,400 48.0% 10,383 52.4%

• Matched transactions of matched firms account for
• <30% total transactions,
• ~50% total value Colombian exports to U.S..





% Transactions, % FOB value matched over time

The Great Trade Collapse appears to knock out smaller exporters, which
are less likely to match.



% Transactions matched, by industry
3 leading sectors

• Industries with relatively high turnover, small firms, appear to
match less frequently



% FOB value matched at transaction level
3 leading sectors



Related party versus Arm’s Length (LFTTD only)

Related party Arm’s Length
level %LFFTD level %LFTTD

# Trans. bet. matched firms 81,000 82.2% 178,000 66.9%
# Trans. matched 30,500 30.2% 67,700 25.2%
FOB value, matched firms 2,930 80.9% 15,500 83.8%
FOB value, matched trans. 1,257 34.7% 9,165 49.5%

• Related party firms are more likely to match, but their transactions
are less likely to match.

• Shades of Bernard et al. (2006) on transfer pricing?



Match rates by shipment value

LFFTD DIAN
quintile trans. value trans. value
1 24% 25% 25% 25%
2 28% 28% 29% 29%
3 26% 26% 27% 27%
4 26% 26% 30% 30%
5 29% 51% 32% 56%

• Better match rates in largest quintile, especially in value terms.



Wholesale/Retail vs Other Importers (LFTTD only)

Non W/R trade W/R trade
level %Non W/R level %W/R

# trans. bet. matched firms 86,000 55.1% 173,000 82.0%
FOB value, matched firms 13,770 83.4% 4,660 83.2%
# FOB. matched trans. 32,500 20.8% 65,000 30.8%

• Poor match rate for non-W/R transactions, but similar share of
FOB value accounted for.



Summary

• Discrepancies in aggregate flows trace to more Colombian
shipments in LFTTD than in DIAN, and larger value per shipment.

• possibly entrepot trade via Panama, not recorded by
Colombians as destined for U.S.

• not just a few problematic sectors.

• Aggregates hide more dramatic inconsistencies in customs records at
the transactions level.

• Transactions that can be matched are accounted for by 2,500
firms—about 35% of the exporting firms in Colombia and 27% of the
importing firms in the United states.

• The firms with at least one matched record account for 97% of
Colombian exports to the U.S. and 85% of U.S. imports from
Colombia, by value

• But even for these firms, most transactions cannot be
matched.



Summary, continued

• Match rates for shipments within matched buyer-seller pairs are low,
especially for:

• non-affi liated trade
• small shipments
• non-wholesale/retail trade



Poor linkages mess things up

• Reseach
• characterization of international B2B networks, GVC’s:

• missed links and imagined links affect network statistics,
undermining inference

• mismeasured longevity of relationships

• analysis of exporter dynamics:
• mismeasured entry costs, search costs, learning

• analyses of technology transfers
• mismeasured effect of interactions

• Government
• construction of trade aggregates
• enforcement of commercial policy
• identification of bad actors abroad

⇒ Well-recognized payoff to doing better



Better identifiers?

• Shipment Invoice numbers
• Issued by the seller to the buyer, lists good, price, etc.; carries
numeric code.

• Main documentation of the sale between the two parties
• U.S. import declaration form requires the importer to attest to
its accuracy and use it to fill-out several vital fields

• but required information on foreign export customs records?
• In the U.S.: invoice # can be used to identify the
"Importer of Record".

• Bills of Lading (BOL) numbers
• BOL issued by the shipment carrier, carries a numeric code
• establishes receipt of the goods, provide evidence of title to the
goods’ownership.

• but they can refer to multiple invoices and they may identify a
container rather than a shipment

• required information on foreign export customs records?
• In the U.S.: BOL # can be used to identify the
"Importer of Record".



Better identifiers?

• Private sector firm identifiers
• Dunne and Bradstreet
• others?

• Global coordination on new recording norms may be infeasible.

But . . .

• Collecting data on a subsample could still be valuable
• provides a sample of known true and false matches
• opens the possibility of "supervised" matching algorithms that
are based on "training" samples



Entrepot Trade as an obscuring factor

• "[T]he majority of trade—80 percent—is shipped indirectly. The
average shipment stops at two additional countries before its
destination . . ." Ganipati et al. (2021)

• DIAN records exports according to their “last known destination."
• If exporters don’t know final destination, could bias trade
statistics in either direction.

• LFTTD records list Colombia as country of origin (CO), shipping
country (CS), or both. Suppose

• CO = Colombia, CS 6= Colombia: not a problem if
properly recorded in U.S.

• CS = Colombia, CO 6= Colombia: could be a problem if
such goods pass through Colombian customs and lose their
country of origin identity, while importer knows CO 6=
Colombia.



First stage: exact greedy matching rounds

1. Using standardized names, match on the first five words in each
string.

example from DIAN:

“CEDAR BRIDGE NURSERIES DBA WORLD CLASS FLOWERS”
becomes
“CEDAR BRIDGE NURSERIES DBA WORLD”

2. If no exact match is found for a record, or if less than five words are
available, it is passed to a second round based on the first four
words.

3. Analogously, records that could not be exactly matched in the
second round advance to a third round, which matches on only the
first three words



First stage: fuzzy matching criteria

• Definitions:
• Let γ be a string based on record characteristics
• let A and B be the set of all upstream and downstream
records, respectively.

• let metric s(γa,γb) measure similarity (inverse Generalized
Edit Distance) between a ∈ A and b ∈ B.

• let B ⊆ B be the set of downstream records for which a is the
best match: B = {b′|a = maxa′∈A s(γa′ ,γb ′)}

• let Ia and Ib be the domestic-record-based firm identifiers
associated with records a and b, respectively. (For us, Ia is the
exporting firm’s NIT, and Ib is the importing firm’s EIN.)

• Trading partner identification
• Then we say firms Ia and Ib are trading partners if (1) b ∈ B,
(2) b is the best match for a:

s(γa,γb) > max
b ′ 6=b

s(γa,γb ′),

and (3) the similarity between a and b, s(γa,γb), exceeds a
threshold value.



First stage: fuzzy greedy matching rounds, continued

• the rounds:
• Block on zip code, fuzzy match on name and street address
• Block on state, fuzzy match on name and street address
• Block on 2-digit zip code, fuzzy match on name
• Still no match? Give up.



Second stage: fuzzy matching on transactions

• Blocking on exporter-importer pairs, use transaction information to
look for consistency in the transactions reported.

• Match on the similarity between the target transaction in DIAN and
each of the potential counterpart transactions in LFTTD.

• Analogously with name/address matching we say records a and b
are a match if

• a is the best match for b,
• b is the best match for a and
• the similarity between a and b, s(γa,γb), exceeds a threshold
value.

• Now, howerer, γ = [HS2, shipment date, value]

• Similarly function somewhat ad hoc, but robustness tested.



Similarity index construction

The index: s ′ = (sHS2 + sdate + svalue ) /3

where:

• 2-digit HS codes:

sHS2 =


|HS2DIAN −HS2LFTTD | = 0 1
|HS2DIAN −HS2LFTTD | = 1 0.7
|HS2DIAN −HS2LFTTD | = 2 0.5
|HS2DIAN −HS2LFTTD | = 3 0.3
|HS2DIAN −HS2LFTTD | > 3 0

• export month: sdate = 1− |MonthDIAN −MonthLFTTD |/12

• and F.O.B. values:svalue =
|ValueDIAN−ValueLFTTD |
ValueDIAN+ValueLFTTD


