Creation and Diffusion of Knowledge in the Global Firm

Çağatay Bircan (EBRD) Beata Javorcik (EBRD, Oxford & CEPR) Stefan Pauly (Sciences Po)

Innovation, Global Value Chains, and Globalization Measurement — A Workshop 6 May 2021

- Knowledge creation and diffusion are main pillars of modern growth theory
- Multinational enterprises (MNEs) account for the vast majority of business expenditure on R&D and innovative activity
- We use patent data to capture knowledge creation and diffusion

• Is knowledge creation becoming more or less collaborative across borders?

- Is knowledge creation becoming more or less collaborative across borders?
- What are the barriers to collaboration and knowledge diffusion?

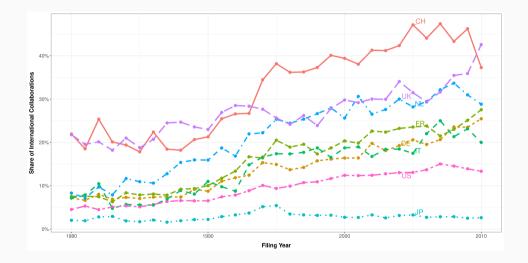
- Is knowledge creation becoming more or less collaborative across borders?
- What are the barriers to collaboration and knowledge diffusion?
- Ongoing: what role do inventor teams & their characteristics (gender) play?

Main Findings

- 1. Knowledge creation is increasingly conducted in **global collaborative teams of inventors**
 - Global collaborative patents are of higher quality
 - Large share of patents by inventors located in foreign affiliates

- 1. Knowledge creation is increasingly conducted in **global collaborative teams of inventors**
 - Global collaborative patents are of higher quality
 - Large share of patents by inventors located in foreign affiliates
- 2. Time zone differences are a major impediment to knowledge diffusion
 - Over and above the effect of physical distance
 - Affect both collaboration and citation patterns

- 1. Knowledge creation is increasingly conducted in **global collaborative teams of inventors**
 - Global collaborative patents are of higher quality
 - Large share of patents by inventors located in foreign affiliates
- 2. Time zone differences are a major impediment to knowledge diffusion
 - Over and above the effect of physical distance
 - Affect both collaboration and citation patterns
- 3. MNEs diffuse knowledge via inventor mobility
 - Overlap in business hours facilitates mobility, while distance does not deter it
 - Women inventors are less mobile

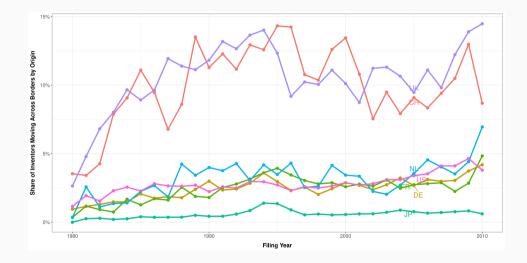

- Patent data from EPO's PATSTAT and USPTO, 1980-2010
- We focus on triadic patent families ("inventions")
- For regressions: filed in 2000-2010 and granted by USPTO, EPO, and JPO

- Patent data from EPO's PATSTAT and USPTO, 1980-2010
- We focus on triadic patent families ("inventions")
- For regressions: filed in 2000-2010 and granted by USPTO, EPO, and JPO
- Geo-coded inventor location & gender of inventor

- Patent data from EPO's PATSTAT and USPTO, 1980-2010
- We focus on triadic patent families ("inventions")
- For regressions: filed in 2000-2010 and granted by USPTO, EPO, and JPO
- Geo-coded inventor location & gender of inventor
- Bureau van Dijk's Orbis + Orbis Intellectual Property (IP)
 - 1. Match between patents and applicant names
 - 2. Global Ultimate Owner (GUO) information

- Patent data from EPO's PATSTAT and USPTO, 1980-2010
- We focus on triadic patent families ("inventions")
- For regressions: filed in 2000-2010 and granted by USPTO, EPO, and JPO
- Geo-coded inventor location & gender of inventor
- Bureau van Dijk's Orbis + Orbis Intellectual Property (IP)
 - 1. Match between patents and applicant names
 - 2. Global Ultimate Owner (GUO) information
- Define a firm as an MNE if it has affiliates in at least two countries
- Today: focus on MNEs.

Fact 1: Cross-border collaboration is on the rise


Fact 2: Global collaborative patents are of higher quality

Dependent Variable:	$\log(1+Citations)$					
Model:	(1)	(2)	(3)	(4)		
Variables						
Collaboration with HQ country	0.9411***	0.4357***	0.4023***	0.1784***		
	(0.1278)	(0.0549)	(0.0532)	(0.0409)		
log(Inventors)				0.5520***		
				(0.0387)		
Fixed-Effects						
Filing Year	Yes	Yes	Yes	Yes		
Inventor	No	Yes	Yes	Yes		
GUO	No	No	Yes	Yes		
Country × Technology	No	No	Yes	Yes		
Observations	589,609	589,609	589,609	589,609		
R ²	0.25045	0.92168	0.93152	0.93957		

HQ Country	Patent families	HQ inventors (in %)	Affiliate inventors (in %)	HQ-affiliate collaboration (in %)
JP	111606	90.75	4.24	5.01
US	75528	64.41	14.41	21.18
DE	38738	64.56	10.58	24.86
FR	18330	52.17	23.05	24.78
UK	8653	34.59	30.20	35.21
СН	6390	16.07	49.20	34.73
NL	5880	11.36	52.02	36.62
SE	5800	49.72	23.14	27.14
KR	5203	78.47	8.38	13.15
IT	4909	60.87	11.96	27.17

• Similar picture emerges for inventor locations • View inventors

Fact 4: Inventors have become more mobile across borders

- 1. Global collaboration
- 2. Citations
- 3. Inventor mobility
- 4. Ongoing: Women inventors & gender norms

• Sample: all patents with at least one inventor located outside HQ country

- Sample: all patents with at least one inventor located outside HQ country
- Patent-inventor level approach:

 $Collaboration_{pijfct} = \alpha Overlap_{ict} + \beta Distance_{ict} + \gamma_f + \delta_{cj} + \eta_i + \varepsilon_{pijfct}$

- Sample: all patents with at least one inventor located outside HQ country
- Patent-inventor level approach:

 $Collaboration_{pijfct} = \alpha Overlap_{ict} + \beta Distance_{ict} + \gamma_f + \delta_{cj} + \eta_i + \varepsilon_{pijfct}$

• "Establishment" (=country-time zone) level approach:

 $Collaboration_{ct} = \alpha Overlap_{ct} + \beta Distance_{ct} + \gamma_f + \delta_{cj} + \varepsilon_{ct}$

- Sample: all patents with at least one inventor located outside HQ country
- Patent-inventor level approach:

 $Collaboration_{pijfct} = \alpha Overlap_{ict} + \beta Distance_{ict} + \gamma_f + \delta_{cj} + \eta_i + \varepsilon_{pijfct}$

• "Establishment" (=country-time zone) level approach:

 $Collaboration_{ct} = \alpha Overlap_{ct} + \beta Distance_{ct} + \gamma_f + \delta_{cj} + \varepsilon_{ct}$

• Collaboration: either 0/1 or the share of collaborative patents

- Sample: all patents with at least one inventor located outside HQ country
- Patent-inventor level approach:

 $Collaboration_{pijfct} = \alpha Overlap_{ict} + \beta Distance_{ict} + \gamma_f + \delta_{cj} + \eta_i + \varepsilon_{pijfct}$

• "Establishment" (=country-time zone) level approach:

 $Collaboration_{ct} = \alpha Overlap_{ct} + \beta Distance_{ct} + \gamma_f + \delta_{cj} + \varepsilon_{ct}$

- Collaboration: either 0/1 or the share of collaborative patents
- Overlap: business hour overlap for inventor *i* located in affiliate country(*c*)-time zone(*t*) with HQ country-time zone

- Sample: all patents with at least one inventor located outside HQ country
- Patent-inventor level approach:

 $Collaboration_{pijfct} = \alpha Overlap_{ict} + \beta Distance_{ict} + \gamma_f + \delta_{cj} + \eta_i + \varepsilon_{pijfct}$

• "Establishment" (=country-time zone) level approach:

 $Collaboration_{ct} = \alpha Overlap_{ct} + \beta Distance_{ct} + \gamma_f + \delta_{cj} + \varepsilon_{ct}$

- Collaboration: either 0/1 or the share of collaborative patents
- Overlap: business hour overlap for inventor *i* located in affiliate country(*c*)-time zone(*t*) with HQ country-time zone
- γ_f GUO FE, δ_{cj} country-technology class FE, η_i inventor FE

Collaboration at the patent-inventor level

Dependent Variable:			Collaboration	ı	
Model:	(1)	(2)	(3)	(4)	(5)
Variables					
$\log(1+hours overlap)$	0.1072***	0.0516**	0.0341***	0.0532***	0.0510***
	(0.0124)	(0.0220)	(0.0118)	(0.0156)	(0.0158)
log(distance)		-0.0512***	-0.0702***	-0.0736***	-0.0732***
		(0.0181)	(0.0107)	(0.0173)	(0.0178)
log(Inventors)					0.1102***
					(0.0116)
Both EN-speaking					0.0721***
					(0.0265)
$\log(1+hours overlap) imes Woman$					0.0199
					(0.0163)
log(distance) × Woman					0.0078
					(0.0122)
Fixed-Effects					
Country × Technology	No	No	Yes	Yes	Yes
GUO	No	No	Yes	Yes	Yes
Inventor	No	No	No	Yes	Yes
Observations	607,304	607,304	607,304	607,304	607,304
R ²	0.04121	0.04689	0.47931	0.72588	0.73059

Collaboration at the establishment level - 1

Dependent Variable:	Collaboration					
Model:	(1)	(2)	(3)	(4)		
Variables						
$\log(1+hours overlap)$	0.1047***	0.0268**	0.0359***	0.0352***		
	(0.0095)	(0.0132)	(0.0129)	(0.0130)		
log(distance)		-0.0715***	-0.0655***	-0.0606***		
		(0.0079)	(0.0094)	(0.0095)		
Both EN-speaking				0.0688***		
				(0.0229)		
Fixed-Effects						
Country x Technology	No	No	Yes	Yes		
GUO	No	No	Yes	Yes		
Fit statistics						
Observations	84,028	84,028	84,028	84,028		
R ²	0.03594	0.0456	0.52778	0.52823		

Dependent Variable:			S	hare of Coll	aborations wit	h HQ		
	No Zeros	No Zeros	No Zeros	No Zeros	With Zeros	With Zeros	With Zeros	With Zeros
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Variables								
$\log(1+hours overlap)$	0.0617***	0.0203***	0.0215***	0.0213***	0.0374***	0.0128***	0.0085**	0.0085**
	(0.0041)	(0.0063)	(0.0062)	(0.0062)	(0.0029)	(0.0042)	(0.0037)	(0.0037)
log(distance)		-0.0377***	-0.0102*	-0.0081		-0.0225***	-0.0112***	-0.0107***
		(0.0047)	(0.0053)	(0.0056)		(0.0031)	(0.0035)	(0.0036)
Both EN-speaking				0.0249*				0.0073
				(0.0130)				(0.0078)
Fixed-Effects								
Country x Technology	No	No	Yes	Yes	No	No	Yes	Yes
GUO	No	No	Yes	Yes	No	No	Yes	Yes
Fit statistics								
Observations	47,621	47,621	47,621	47,621	84,028	84,028	84,028	84,028
R ²	0.04422	0.05434	0.61576	0.61593	0.02431	0.02941	0.518	0.51802

• Sample: all patents with at least one inventor located outside HQ country

Citations: Two alternative approaches

- Sample: all patents with at least one inventor located outside HQ country
- Patent-inventor level approach:

 $Citation_{pijfct} = \alpha Overlap_{ict} + \beta Distance_{ict} + \gamma_f + \delta_{cj} + \eta_i + \varepsilon_{pijfct}$

Citations: Two alternative approaches

- Sample: all patents with at least one inventor located outside HQ country
- Patent-inventor level approach:

 $Citation_{pijfct} = \alpha Overlap_{ict} + \beta Distance_{ict} + \gamma_f + \delta_{cj} + \eta_i + \varepsilon_{pijfct}$

• "Establishment" (=country-time zone) level approach:

$$Citation_{ct} = \alpha Overlap_{ct} + \beta Distance_{ct} + \gamma_f + \delta_{cj} + \varepsilon_{ct}$$

Citations: Two alternative approaches

- Sample: all patents with at least one inventor located outside HQ country
- Patent-inventor level approach:

 $Citation_{pijfct} = \alpha Overlap_{ict} + \beta Distance_{ict} + \gamma_f + \delta_{cj} + \eta_i + \varepsilon_{pijfct}$

• "Establishment" (=country-time zone) level approach:

$$Citation_{ct} = \alpha Overlap_{ct} + \beta Distance_{ct} + \gamma_f + \delta_{cj} + \varepsilon_{ct}$$

 Citation > 0: indicates whether a patent filed at a foreign affiliate cites at least one patent previously filed by inventors located in HQ

Citations at the patent-inventor level

Dependent Variable:	Citation Count > 0				
Model:	(1)	(2)	(3)	(4)	(5)
Variables					
$\log(1+hours overlap)$	0.0067	0.0062	0.0225**	0.0263	0.0236
	(0.0086)	(0.0087)	(0.0089)	(0.0195)	(0.0195)
log(distance)		-0.0009	-0.1439***	-0.1377***	-0.1395***
		(0.0142)	(0.0415)	(0.0512)	(0.0512)
Both EN-speaking					0.0746
					(0.0632)
$\log(1+hours overlap) imes Woman$					0.0224
					(0.0151)
log(distance) × Woman					0.0110
					(0.0210)
Fixed-Effects					
Citing GUO	No	No	Yes	Yes	Yes
Country × Technology	No	No	Yes	Yes	Yes
Inventor	No	No	No	Yes	Yes
Fit statistics					
Observations	241,436	241,436	241,436	241,436	241,436
R ²	0.00035	0.00035	0.28995	0.63465	0.63472

Citations at the establishment level

Dependent Variable:	Citation Count > 0					
Model:	(1)	(2)	(3)	(4)		
Variables						
$\log(1+hours overlap)$	0.0169**	0.0115	0.0249***	0.0253***		
	(0.0078)	(0.0076)	(0.0096)	(0.0096)		
log(distance)		-0.0103	-0.2166***	-0.2158***		
		(0.0142)	(0.0546)	(0.0545)		
Both EN-speaking				-0.0107		
				(0.0272)		
Fixed-Effects						
Citing GUO	No	No	Yes	Yes		
Country x Technology	No	No	Yes	Yes		
Fit statistics						
Observations	28,735	28,735	28,735	28,735		
R ²	0.00168	0.00197	0.38796	0.38797		

• Sample: all inventors located outside HQ country

- Sample: all inventors located outside HQ country
- Establishment level approach:

 $Move_{fc} = \alpha Overlap_{fct} + \beta Distance_{fct} + \gamma_f + \delta_c + \varepsilon_{fct}$

- Sample: all inventors located outside HQ country
- Establishment level approach:

$$Move_{fc} = \alpha Overlap_{fct} + \beta Distance_{fct} + \gamma_f + \delta_c + \varepsilon_{fct}$$

• *Move_{fct}* = 1 if there is at least one inventor patenting at affiliate (headquarters) who has previously patented at headquarters (affiliate), 0 otherwise

Inventor mobility: bidirectional results

Dependent Variables:	Move	from HQ to	Affiliate	Move from Affiliate to HQ		
Model:	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
$\log(1+hours overlap)$	0.0265**	0.1357***	0.1227***	0.0423***	0.1226***	0.1079***
	(0.0123)	(0.0286)	(0.0272)	(0.0161)	(0.0285)	(0.0283)
log(distance)		-0.1260	-0.1419		0.0135	-0.0044
		(0.0876)	(0.0888)		(0.0655)	(0.0658)
Both EN-Speaking			0.1500*			0.1697
			(0.0898)			(0.1078)
Fixed-Effects						
GUO	No	Yes	Yes	No	Yes	Yes
Host Country	No	Yes	Yes	No	Yes	Yes
Fit statistics						
Observations	12,611	12,611	12,611	12,611	12,611	12,611
R ²	0.00032	0.1989	0.19925	0.00105	0.18127	0.18185

- Can unobserved bilateral variables drive the results?
 - Robust to inclusion of HQ-host country bilateral FE

- Can unobserved bilateral variables drive the results?
 - Robust to inclusion of HQ-host country bilateral FE
- Are results driven by certain countries?
 - Robust to dropping GUOs from US or dropping inventors located in the US
 - Robust to dropping GUOs with multiple home establishments

- Can unobserved bilateral variables drive the results?
 - Robust to inclusion of HQ-host country bilateral FE
- Are results driven by certain countries?
 - Robust to dropping GUOs from US or dropping inventors located in the US
 - Robust to dropping GUOs with multiple home establishments
- Clustering at different combinations of GUO, host country, technology class

Are women inventors less mobile?

$$Move_{ifct} = \eta Woman_i + \theta Tenure_{ift} + \delta_c + \gamma_f + \varepsilon_{ifct}$$

Are women inventors less mobile?

$$Move_{ifct} = \eta Woman_i + \theta Tenure_{ift} + \delta_c + \gamma_f + \varepsilon_{ifct}$$

Dependent Variable:			Move betwe	en HQ and Af	filiate	
	Full Sample	Full Sample	Full Sample	Full Sample	Full Sample	4th patent or more
Model:	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
Woman	-0.0014	-0.0045***	-0.0047***	-0.0046***	-0.0042***	-0.0052***
	(0.0011)	(0.0011)	(0.0011)	(0.0011)	(0.0011)	(0.0018)
log(Previous Filings)			-0.0015***			
			(0.0002)			
log(Citations Received)				-0.0004***		
				(0.0001)		
Fixed-Effects						
GUO	No	Yes	Yes	Yes	Yes	Yes
Host Country	No	Yes	Yes	Yes	Yes	Yes
Origin Year	No	No	No	No	Yes	No
Destination Year	No	No	No	No	Yes	No
Fit statistics						
Observations	279,909	279,909	279,909	279,909	279,909	96,211
R ²	1e-05	0.12195	0.12211	0.12203	0.12327	0.09604

 $WomanShare_{ct} = \alpha GenderGap_{c} + \beta MathGap_{c} + \eta HQWShare_{ft} + \gamma_{fj} + \delta_{cj} + \varepsilon_{ct}$

 $\textit{WomanShare}_{\textit{ct}} = \alpha \textit{GenderGap}_{\textit{c}} + \beta \textit{MathGap}_{\textit{c}} + \eta \textit{HQWShare}_{\textit{ft}} + \gamma_{\textit{fj}} + \delta_{\textit{cj}} + \varepsilon_{\textit{ct}}$

Dependent Variable:	Affiliate Woman Share						
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Variables							
Overall Gender Gap Host	0.0142***	0.0173***					0.0123***
	(0.0041)	(0.0056)					(0.0039)
Math Gender Gap Host			-0.0164***	-0.0167**			-0.0160***
			(0.0055)	(0.0081)			(0.0058)
HQ Woman Share					0.2001***	0.0881***	0.0849***
					(0.0265)	(0.0301)	(0.0300)
Fixed-Effects							
GUO×Technology	No	Yes	No	Yes	No	No	No
GUO Country×Technology	No	No	No	No	No	Yes	Yes
Fit statistics							
Observations	48,191	48,191	48,191	48,191	48,191	48,191	48,191
R ²	0.00159	0.54657	0.00181	0.54636	0.00967	0.13997	0.14312

- Cross-country evidence on where and how innovative activity takes place inside MNEs
- Document barriers to MNEs' ability to diffuse knowledge across borders
- Working across time zones \implies communication costs, monitoring, and repeated interaction matter
- In progress: role of inventor teams, gender, and country-level gender norms

Appendix

Fact 3: Many inventors are located in foreign affiliates

HQ Country	Inventors	HQ inventors (in %)	Affiliate inventors (in %)
JP	296603	91.47	8.53
US	255277	79.48	20.52
DE	98278	73.98	26.02
FR	39714	57.85	42.15
UK	27794	46.33	53.67
СН	17812	20.93	79.07
KR	15467	83.06	16.94
NL	14643	22.64	77.36
SE	13641	59.09	40.91
IT	9752	64.05	35.95

A Back to presentation