

Evaluation of NGS for Companion Diagnostic Use

Anne-Marie Martin, PhD, GSK IOM, Washington DC, November 10, 2014

What is Precision Medicine?

"Identify the right patient for the right drug"

Tumor Biology

Biomarkers (PD, predictive, Imaging)

Translational Medicine

To Deliver

Better Patient Selection

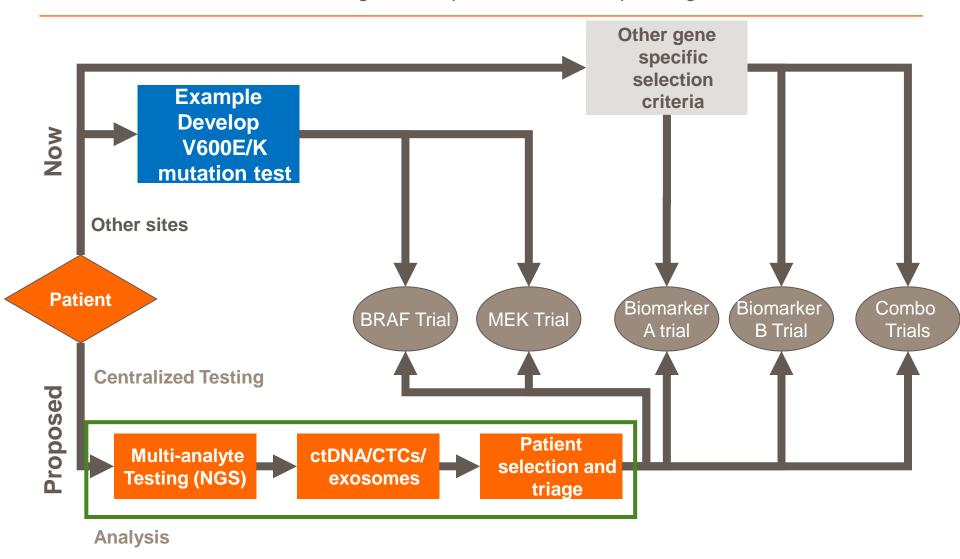
Better Patient Outcomes (Efficacy/Saf) Resulting in

More efficient clinical dev

Improved Benefit/Risk

Stronger Value Proposition (for PM stakeholders)

Precision Medicine and Diagnostics


Requires excellence in biomarker discovery, patient sample collection, clinical translation and companion diagnostic development to select the right patient for the right medicine

Access Register Patient testing in Co-Dx the global market place to enable simultaneously with Precision access to precision medicines Medicines Selection/ Discovery Develop **Stratification** Predictive/response/ Validated assays of eligible patients safety Biomarkers to in our clinical and co-Dx support clinical studies hypothesis testing

Path to Precision Medicine

"One biomarker, one test, one drug" to multiple markers, multiple drugs

Developing Targeted Agents in Cancer

Key considerations

Robustness of Science

Tumor Heterogeneity

- Complex molecular signaling cascades
- Multiple mechanisms of resistance

Patient Population & Unmet Medical Need

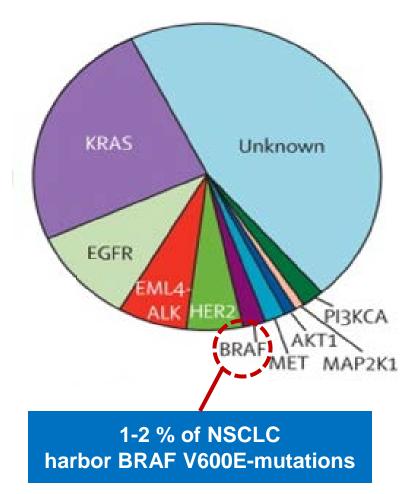
Clinical Trial Feasibility

- Incidence/prevalence of disease
- Frequency/presence of biomarker
- Patient consent; Access to tumor tissue (e.g. biopsy)

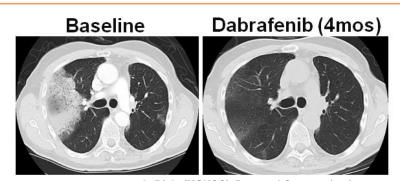
Cutting Edge Technology

Diagnostic Development Capabilities

- Assay validation (e.g. sensitivity/specificity)
- Sample processing and biomarker platforms
- Multiple biomarkers


Evolving Regulatory Environment

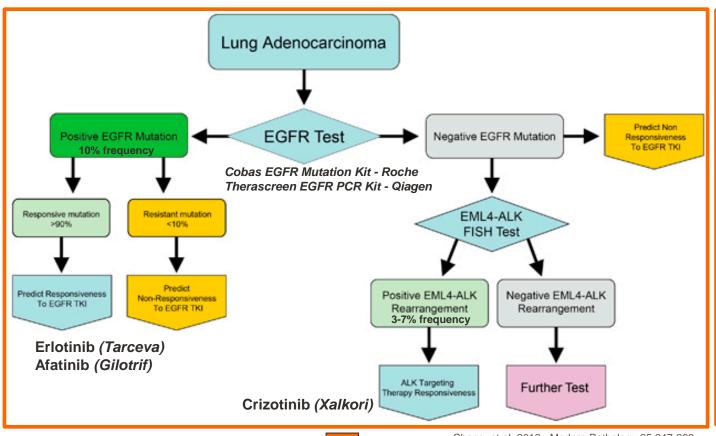
Integrating Drug and Diagnostic Development


- Requirements for companion diagnostic
- Third party collaborations/partnerships
- Lack of global standards

Challenges of Drug Development in Rare NSCLC Population

BRAF V600E

- Ongoing Phase 2 study (BRF113928) in advanced BRAF V600E+ NSCLC
 - > 11,000 subjects screened to enroll
 23 patients (at interim)
- Complexity of conducting randomized Phase 3 trial in BRAF V600E+ NSCLC:
 - > 20,000 subjects to identify 300 eligible patients
 - ~14yrs projected to complete study


G. Riely (MSKCC), Personal Communication

A. Marchetti et al., J. Clin. Oncol. 29, 1, 2011, P. Paik et al., J. Clin. Oncol. 29, 2046, 2011

Molecular Testing Algorithm in Lung Cancer

The conundrum of insufficient tissue

- Small size & volume of lung biopsies
- Tissue is scarce following hierarchal biomarker screening
- Physician reluctance to obtain repeat biopsies- risk of invasive procedure
- High cost associated with multiple tests

Cheng, et al. 2012. Modern Pathology 25:347-369

Screening for Clinical Trials: BRAF, ROS1, RET, HER2, MET, KRAS...

Patient Selection and cDx Development is Challenging

Path to developing targeted agents in Lung Cancer

Path to developing targeted agents in Lung Cancer

Molecular characterization of tumors

A large proportion of lung cancers have potentially actionable mutations

Segmentation of Lung
Cancer

Develop therapeutics that target specific altered genes or pathways.

Revolutionize Drug Development

This requires patient screening/selection, novel trial designs with appropriate incorporation of diagnostic.

Deliver Products of Value

Products with greater clinical benefit in a smaller population of patients selected for a biomarker; value to PM stakeholders

Innovation in cDx Development

Multiple single-plex assays and platforms

Most assays require tumor; availability limited and biopsies difficult /invasive

Regional platform availability and not large-scale

Regulatory path not well defined; lack of precedent adds complexity

Even regional commercial viability challenging

Single, multiplex assay/platform covering all biomarkers

Low sample quantity input; alternative sample type avoiding invasive procedure

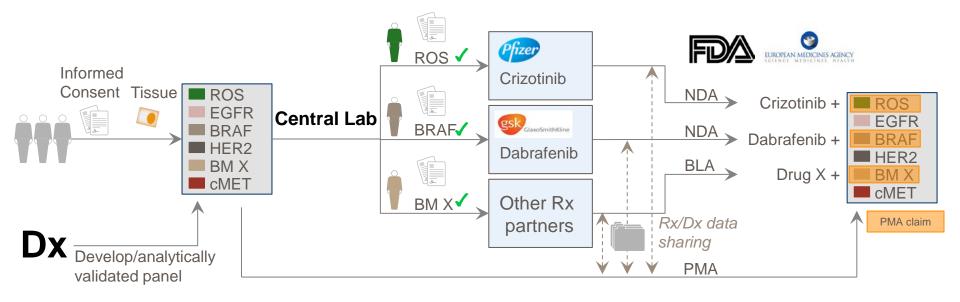
Global Platform(s) accessibility

Path to global registration

Commercially viable on a global scale

Collaborative Multi-Pharma/partner Network to Advance Multi-biomarker Diagnostics

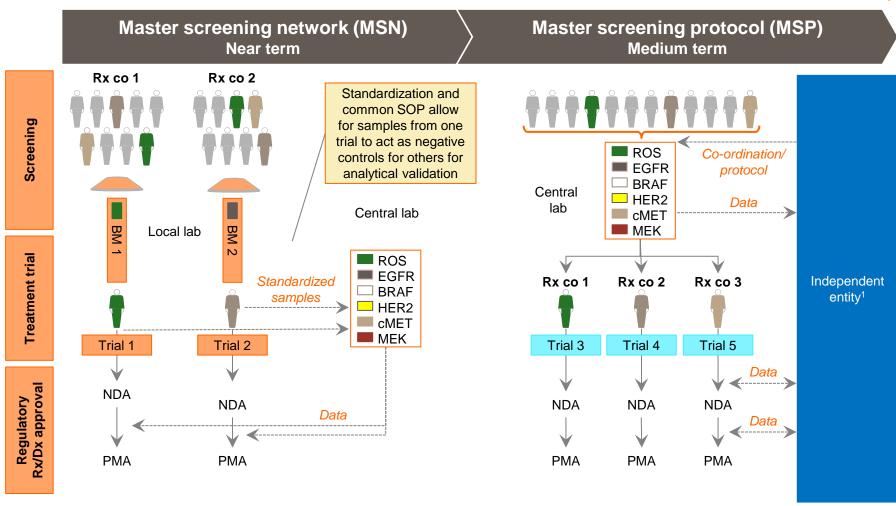
- Engage multiple PM stakeholders
 - NCI, Academia, Advocacy, Regulatory, Payer
 - Pharma/Diagnostic
- Enable standardized, shared screening between pharma companies to make clinical development for rare mutations cost effective
- Advance the regulatory paradigm for companion diagnostics
 - Create a path for multi-biomarker panels
 - Enable the use of new sequencing technologies, including NGS
- Disseminate NGS screening to help create a market for drugs targeting rare mutations


The Approach

Master screening network for all interested pharma

Treatment trial

Regulatory Rx/Dx co-approval


- Panel contains genes relevant to current and future assets across cancer types and pipeline
- Initial screening effort focuses on NSCLC

PMA claims to support drug approvals

Panel would be used commercially to support adoption of the Rx associated with the panel

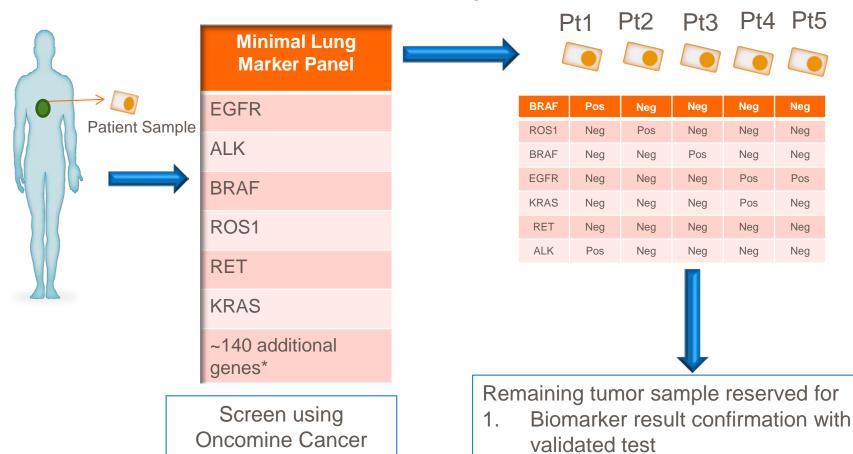
MSN (Network) addresses near term needs and sets stage for MSP (Protocol)

Assay overview: Oncomine Cancer Panel

To detect relevant somatic alterations in solid tumors with evidence linking alterations to targeted therapies

- •The Oncomine Cancer Panel (OCP) has two versions
 - •OCP 150 validate for clinical trial use
 - •OCP 50 Validate for registration and commercialization
- •Enables detection of somatic alterations with high accuracy and precision
- Both DNA and RNA isolated from FFPE tumor specimens
- Detection of these variants will be performed using the Ion Torrent™ PGM™ Dx system

Desired criteria to be satisfied by the NGS platform/assay


Workflow	Criteria for evaluation	Desired Metrics
Sample Acquisition	Sample input	•Low quantity input
Sample Prep	Easy to perform/minimal stepsFFPEApproved via multiple kits	High quality DNA/RNA at good yieldsCan utilize other FDA-approved kits
Library Prep	 •QA/QC, quantity assessment •TaT •Multiple or single processing •GC rich coverage 	•Minimal need for multiple QA steps•Rapid TaT•Multiple processing
Sequencing/detection	CoverageSensitivityThroughput	Minimal 500X coverageAt least 5%Multiple samples?
Analysis/BioInformatics	Speed to variant callMut/Indel/CNV/rearrangementFASTQ dataStandard workflow	•TaT w/all possible variants in software studio
Reporting	•Statistics •User interface	•Report confidence measurement •Link to original data (e.g. BAM files)
Others	Sample handlingData storage and management	Cost effective for single clinical sampleEasy and secure access, scalable

Testing Paradigm: Support Patient Screening in clinical trials and cDx assay validation/development

<u>Testing to be performed in central reference lab(s)</u>

To serve as negative control for other biomarker validated assays

Panel

¹⁵

^{*} NGS OCP 150 has ~150 cancer genes, OCP50 has 50 cancer genes

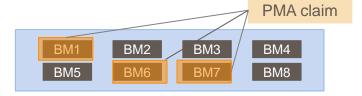
Dx Labeling Framework

 Scalable labeling framework is key to industry's decision to pursue development and registration of multiplex/NGS platforms

	Biomarker A	Biomarker Z (Analyte of Unknown Significance)
Type of Claim	Predictive	Analytical
Intended To Be Used for Treatment Selection	Yes	No (not outside clinical trials)
Subject to FDA Review	PMA (Quality, Analytical, Clinical)	Yes (Quality, Analytical)
Clinical Utility Data	Yes	Not at present

 Biomarker Z (AoUS) could be "upgraded" to an FDA-approved Predictive Claim after submission of additional clinical utility data and PMA review/approval

To Enable Master Screening, we are Working with US Regulators to Establish a Novel Regulatory Framework


Start by analytically validating the full panel

Then over time upgrade specific markers to predictive PMA claims using clinical trial data

NGS panel with~150 biomarkers

NGS panel

Aim to establish a novel approach to NGS CDx, which will require:

- Move from 'one-test, one-drug' to 'one-test, multiple drugs'
- Pushing forward despite lack of precedent in multiple areas
- Navigating novel and cutting edge approaches / technologies
- Working across CDRH and CDER to develop guidelines in a changing regulatory environment
 - Will engage other HAs
- Engaging NCI, academic KOLs and patient advocacy groups

Summary

- Medicine is evolving
 - Advances in technology leads to greater data access
 - Comprehensive data in smaller samples
 - Information revolution brought to the patient at molecular level
- Enables Drug development
 - Screen multiple targets, triage patients to multiple targeted agents (e.g. Umbrella studies, NCI MATCH, LUNG MSP
- Better identification of patients eligible for treatment
 - Improved benefit/risk
 - Better clinical outcomes / better value
 - More efficient drug development
- Evolving regulatory environment

Acknowledgements

- GSK
- Rafael Amado
- Lini Pandite
- Jonathan Pan
- Jennifer Dudinak
- Noemi Rosa
- Yuchen Bai
- Cindy Kurtis
- Jeff Legos
- Pfizer
- Barbara Dalton
- Chris Boshoff
- Omar Perez
- Erling Donnelly
- Laurie Strawn

- ThermoFisher/Life
- Dan Rhodes
- Amber Swindell
- Thomas McElroy
- Lynne McBride
- Jody Schulz
- NCI
- Barbara Conley
- Mickey Williams
- MGH
- Keith Flaherty