

Frederick National Laboratory for Cancer Research

Challenges in Analytical Validation of NGS Tests for Clinical Trials: NCI-MATCH Study

P. Mickey Williams, Ph.D.

Director of the Molecular Characterization Laboratory (MoCha)

November 10, 2015

National Cancer Policy Forum Workshop

Disclosure

- I have no financial relationships to disclose
- I will not discuss off-label use and/or investigational use in my presentation
- The views and opinions I express are my own and do not represent Leidos Biomedical Research nor NCI/NIH

Next Generation Sequencing

- Powerful multi-analyte (giga-analyte) assay method gaining popularity in all aspects of cancer research and patient clinical management
- NGS is a complex assay system:
 - Molecular biology techniques used to prepare and sequence DNA & RNA
 - Complex computer algorithms used to align the sequence to a reference and determine sequence variance
 - Every aspect of the assay system adds a unique bias to results
- 3 types of NGS of increasing complexity
 - Targeted sequencing (clinical)
 - Whole exome (research and clinical)
 - Whole genome (research and clinical?)
- Rapid improvements are occurring to these systems

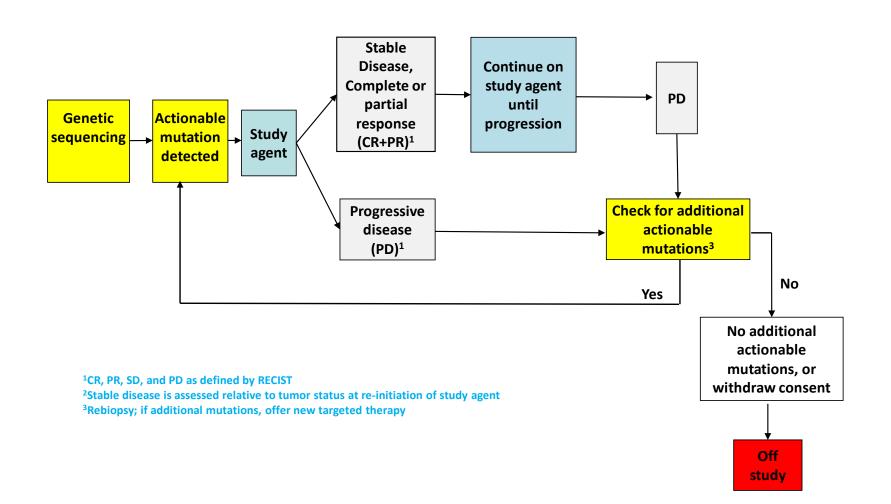
Steps to Validating a NGS Assay System for Use in a Clinical Trial

- Define intended use
- 2. Define assay system
- 3. Feasibility test the assay
- 4. Recommend consultation with FDA if specimens will be collected as part of the clinical trial specifically for this assay (Integrated or Integral)
- Assess feasibility, mitigate assay weaknesses, define minimal analytical performance criteria and lock assay SOPs
- 6. Analytical validation of assay performance

Assay Intended Use

- Assay intended use as part of a clinical study:
 - 1. Pure clinical research (specimens not collected specifically for this use)
 - Integrated assay (required for the clinical study but results not used for enrollment or treatment selection, e.g. specimens are collected for retrospective research)
 - 3. Integral assay (assay used for patient enrollment or treatment selection)

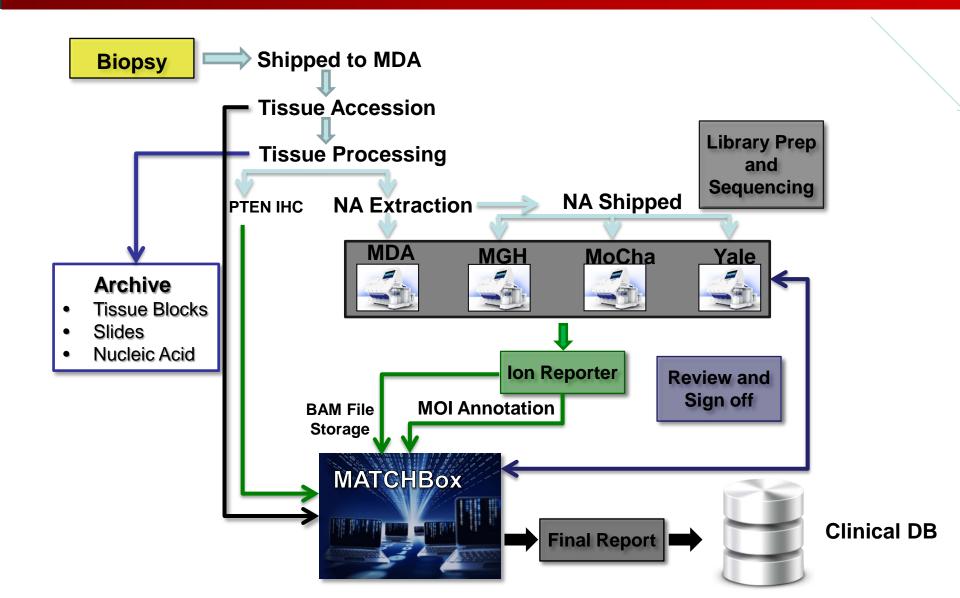
Assay System


- Assays are systems that include all steps from biopsy through assay result reporting
- NGS assays are complex, any deviation from SOPs can confound data
- Document and lock down all aspects of the system in SOPs
- Assay systems each have a unique bias that at best is reproducible within the assay, but cannot be assumed to yield identical results to a different protocol
 - Changes in assay chemistry or data analysis will impact results

Don't assume that different assays or different laboratories will yield identical results!

NCI MATCH Study

- A multi-arm basket study
 - Multiple treatment arms each including multiple tissues
- Identify mutations/amplifications/gene fusions in patient tumor sample - eligibility determination
- Assign patient to relevant agent/regimen using a rules based approach
- Requires screening large numbers of tumors and have large numbers of targeted treatments


SCHEMA

1. MATCH NGS Assay Intended Use

- MATCH NGS assay: intended use for patient entrance and treatment assignment (Integral Assay)
- Identical NGS assay system run 4 clinical laboratories (increased complexity)
 - MD Anderson Cancer Center (S. Hamilton)
 - Yale (J. Sklar)
 - MGH (J. lafrate)
 - FNLCR (M. Williams)
- Levels of evidence established a priori matching of variants with treatment arms
- MATCHbox will select treatment based on established rules
- Consulted FDA CDRH (Devices) early via pre-submission meetings to determine best path for bringing assay into study

2. NCI-MATCH Assay System & Work Flow 11-14 Day Turnaround Time

3. MATCH Assay Feasibility Testing

- Gain familiarity with the assay prior to validation
- Identify strengths, weaknesses, mitigate assay deficiencies
- Develop quality check metrics and failure thresholds
- Develop and document data analysis and reporting process

4. Pre-Submission Discussion with FDA

- Meet with CDRH to discuss MATCH Study and Assay Intended Use and Validation Plan and expected assay minimal performance criteria
- The assay reports minimally 4048 known and annotated variants
- How can we validate such a large number of analytes?
- Demonstrate analytical performance with a subset of these variants

5. Assess Feasibility

- Assay performance was overall acceptable
- Identified several areas of weakness:
 - Difficult to sequence regions identified
 - Site to site variability in CNV normalization
 - In process of mitigation
 - Mark difficult sequence and increase confidence threshold for call prevent false positives, but increase false negatives
 - Test site specific normalization standard
- Met to harmonize laboratory procedures
- Finalize quality check metrics
- Finalize SOPs for full assay system
- Define minimal acceptable analytical performance criteria

6. Validation Plan

- Each laboratory will test analytical performance:
 - SENSITIVITY of 5 variant classes (FFPET clinical specimens with verified mutations):
 - SNV
 - Indel (small)
 - Indel (large)
 - CNV
 - Gene fusions
 - SPECIFICITY of all reportable variants (5 FFPET HAPMAP cell lines)
 - Accuracy (positive and negative accuracy)
 - Repeatability/Reproducibility (2 operator in each lab repeat 5 clinical specimens 2X each on 2 different instruments)
 - Full assay system 'fit for purpose testing"

Some Final Comments

- NGS Assay systems are complex, everybody is doing it, but do different laboratories and assays get the same result?
 - Urgent need for reference materials (i.e. NIST Genome in a Bottle)
 - Need for minimal information guidelines for publication of NGS data (similar to MIAME)
- Plan for success in clinical studies, which will demonstrate clinical validity and prepare for demonstration of clinical utility
- There is a need for guidelines for clinically actionable variants, what level of evidence is needed before clinical action is taken?
- The community needs to work together collaboratively to insure successful integration of NGS into cancer patient management

Some Basic Guideline Documents

- Basic guidelines for development and clinical use of NGS assays, e.g.
 - CAP NGS Checklist
 - CLSI MM09-A2
 - "ACMG clinical laboratory standards for NGS", Genetics in Medicine; pg. 733-755 vol. <u>15</u>
 (9) 2013
 - CDC "Assuring the quality of NGS in clinical laboratory practice" Nat. Biotech. Pg. 1033-1036 vol. 30 2012