The Geoscience Workforce

Sharon Mosher Jackson School of Geosciences University of Texas at Austin

6-year NSF-sponsored initiatives:

- Geoscience academic & employer community has developed a consensus on concepts, skills & competencies needed by undergraduates.
- Similar skills & competencies needed for Earth, Ocean & Atmospheric Sciences graduate students at a more advanced level.

Employment for Geoscientists is Expanding

AGI predicts shortage of 35,000 FTEs by 2028

Careers of today will not be those of the next decade

Geoscience Education – what employers expect*

Foundational knowledge – good education in geosciences

• Breadth in geosciences, grounding across all sciences

<u>Understand geoscience concepts & processes</u> <u>Develop scientific, technical & professional skills</u>

Build Competency – ability to successfully accomplish something using knowledge & skills

- Diverse and adaptable skill set
- Intellectually flexible
- Ability to learn

*Employers Workshops: undergrads 2015; grads 2018; Summits 2014, 2016, 2019; 2014-2015 survey; Workshops 2015, 2017, 2019; multiple employer focus groups

Skills Needed for Success

- Problem solving & critical thinking
- Written & oral communication / listening skills
- <u>Capacity for learning/adaptable</u>
- Systems thinking & approach
- Expertise/depth in core area, strong technical skills

Ph.D. & M.S.

- Data Management, Data Analytics
- High level quantitative skills
- Computational skills, programming, modeling
- Project management, teamwork, leadership 😔
- Ethics & professionalism
- Social dynamics interpersonal skills 😞
- Understand societal relevance, global perspective

Undergraduates too!

More detail:

https://www.youtube.com/channel /UCuUh_ZRxipieB3dnkvd0l_Q

Earth Science Habits of Mind

Geoscientific & Systems Thinking

How systems work & interact

- Earth as a complex, non-linear, coupled system of interacting parts & processes
- Temporal & spatial thinking 3D & 4D

Understanding processes

- Linkages, feedbacks, driving forces
- Impacts

Geologic reasoning and synthesis

Employers stressed Systems Thinking – all types of systems – is critical

- Consider entire systems & recognize that any parts in isolation may act differently than when within the system
- Start at the system level & evaluate interactions & limitations of its different parts
- Look at the big picture first, then drill down to details, & bring that information back up to the system level.

Goal setting

Solution-oriented approaches

Critical thinking & problem solving

Preparation for "real world" professional projects and/or future research

Problem Solving with real data, non-unique answers

- Understand context of problem
- Identify appropriate questions to ask, data to collect, methods to use
- Be able to collect data, analyze quality, interpret & apply
- Undergraduates Make predictions with limited data
 - Work on problems
 - In an open & dynamic system
 - With no clear answers, high ambiguity
 - By analogy, inference and limits of certainty
 - Visualize and solve problems in 3D & 4D
 - Understand & manage uncertainties
 - Understand importance of scale space & time
 - Critically evaluate literature

Critical thinking & problem solving Most Important Skill – regardless of discipline

Independent critical thinking, problem development, execution

& analysis skills

- Pragmatic, logical thinking
- Flexibility, open-mindedness
- Good grasp of uncertainty

ph.D. & M.S. **Define problem & apply an appropriate solution**

Sufficient solution vs. a precise, complete solution

Translate problem to -- so what?

- Articulate importance of outcomes
- What decisions will be made

Understand broader impacts of research

& how to communicate those impacts

Many graduates struggle with being able to define a problem & identifying how to apply the solution (but could solve the problem)

Data Management & Data Analytics

Currently need & increasingly important in the future – across employer spectrum!

- Undergraduates ph.D. & M.S. Awareness of data analytics, applications, processes for using data
 - Handle large datasets lacksquare
 - Examine datasets to draw conclusions about information contained
 - Data acquisition -- data collection
 - Data management & analysis effectively organize, manage, synthesize
 - Data manipulation ullet
 - Data integration
 - Data assimilation
 - Data quality
 - Visualization & modeling
 - Valuation
 - Other data science-increasing in future

Earth as a Complex System

Non linear complex systems Energy, mass, fluid transport (movement and flow), residency, and cycles Work/changes that affect the Earth's systems Solar system interaction

Deep Time

Conventional concepts of geologic time

Impact on processes **Events and rates**

Temporal reasoning

Earth Materials

What is a rock, mineral? Rock cycle **Rocks: physical and chemical properties** Processes that form rocks and minerals **Resource applications, organic-inorganic materials**

Earth Structure

Undergraduates

Concepts

Surface Processes

Sediment deposition & erosion **Terrestrial & marine surface interactions** Landscape alteration (geomorphology) Habitability, sustaining life

Hydrogeology

Water cycle

Groundwater/aquifers

Biogeochemistry & aqueous geochemistry Subsurface-surface water interactions **Economics & public policy**

Natural Resources

Understanding "natural resources"

Solid vs. liquid resources, geographic distribution, uses **Ecosystem services, renewable & non-renewable** resources

Resource dependency & limits

Climate Change

What is climate change? Geologic scale vs. present **Driving forces & causal mechanisms Carbon cycle** Impacts of climate change

M – master P- proficient Geoscience-specific skill

Skill List (A-awareness (had in class); P-proficiency (had to use/apply); M-mastery (project, etc. requiring demonstration of ability); E-expert (MS or PHD)	Level of Mastery
Critical thinking/problem solving skills	Р
Communicate effectively to scientists & non-scientists	Р
Readily solve problems, especially those requiring spatial and temporal (i.e. 3D and 4D) interpretations	Μ
Make inferences about Earth system from observations of natural world combined with experimentation and modeling	Μ
Work with uncertainty, non-uniqueness, incompleteness, ambiguity and indirect observations	М
Ability to access and integrate information from different sources and to continue to learn	Μ
Understand and use scientific research methods	Ρ
Have strong quantitative skills and ability to apply	Р
Integrate data from different disciplines and apply systems thinking	Р
Have strong field skills and a working knowledge of GIS	М, Р
Work in interdisciplinary teams and across cultures	Р
Have strong computational skills and the ability to manage and analyze large datasets	Р
Be technologically versatile (i.e. Google Earth, tablets, smartphones, apps)	М

Coming Fall 2020

6-year NSF-sponsored initiatives:

Vision and Change in the Geosciences Extensive document containing results of

- Robust academic & employer community vision for Future of Undergraduate Geoscience Education
- Key strategies/recommendations for transformative change
- Case studies from department heads/chairs implementing program changes to meet these needs
- Plus: Employer view on skills needed by graduate student

Represents input of ~1000 geoscientists

PowerPoint slides, webcasts & more information: http://www.jsg.utexas.edu/events/summit-on-improving-geosciencegraduate-student-preparedness-for-the-future-workforce/ http://http://www.jsg.utexas.edu/events/future-of-geoscienceundergraduate-education/

VISION AND CHANGE IN THE GEOSCIENCES

The Future of Undergraduate Geoscience Education

Sponsored by National Science Foundation WHERE DISCOVERIES BEGIN