Assisted Reproduction Techniques for avoiding inherited diseases

## Practical aspects of PGD and Results

Peter Braude OBE FRCOG FMedSci Emeritus Professor of Obstetrics and Gynaecology Division of Women's Health King's College London

## **Reporting Outcome of PGD**



#### Most clinics and registries report outcome based on the IVF and the PGD as per 1<sup>st</sup> transfer cycle

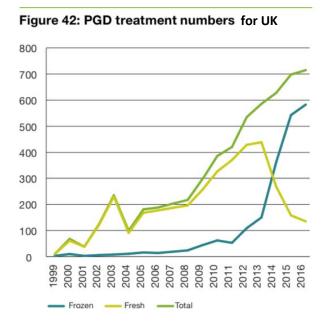
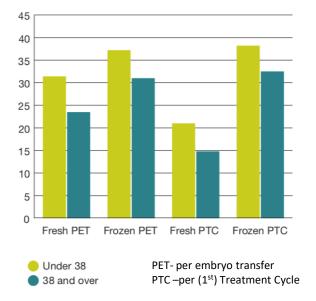
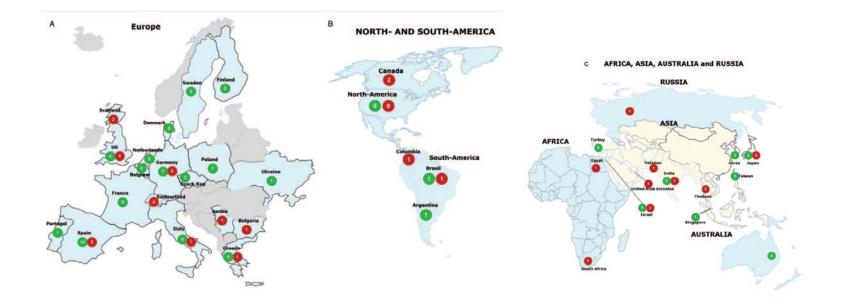
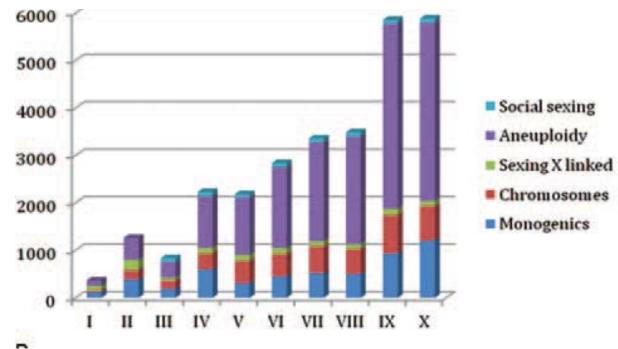





Figure 45: PGD birth rates by age, 2016

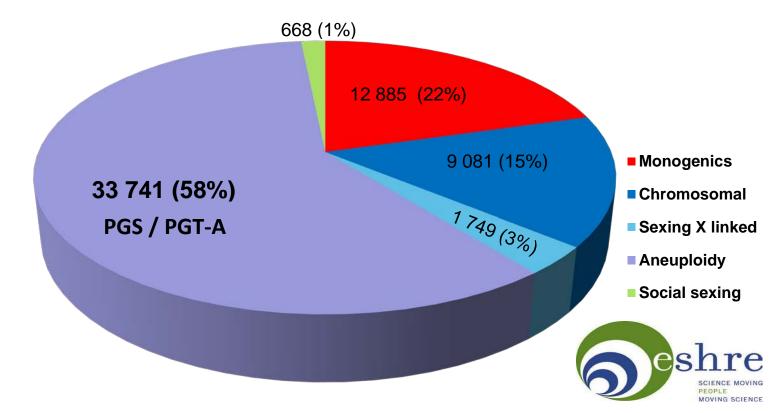


HFEA Fertility Treatment: 2014-2016 Trends and Figures

#### Data from ESHRE PGD Consortium




#### Human Reproduction Update, Vol.0, No.0 pp. 1-14, 2012


doi:10.1093/humupd/dmr052



# The ESHRE PGD Consortium: 10 years of data collection



#### REASONS FOR EMBRYO BIOPSY ESHRE Consortium data I-XV Based on 54,589 cycles



ESHRE 2015 Coonen

#### Human Reproduction Update, Vol.0, No.0 pp. 1-14, 2012

doi:10.1093/humupd/dmr052

human reproduction update

# The ESHRE PGD Consortium: 10 years of data collection

| Table I Ten years of | FPGD Consortium data. |
|----------------------|-----------------------|
|----------------------|-----------------------|

|                                        | Cycles to<br>OR | No. embryos<br>biopsied | No. embryos transferred<br>(mean/ET) | Embryo transfer<br>procedures | Clinical pregnancy rate<br>(per OR and per ET) |
|----------------------------------------|-----------------|-------------------------|--------------------------------------|-------------------------------|------------------------------------------------|
| Single genes                           | 4733            | 27980                   | 7035 (1.9)                           | 3727                          | 22% per OR<br>29% per ET                       |
| Structural chromosome<br>abnormalities | 4253            | 27068                   | 4775 (1.7)                           | 2731                          | 17% per OR<br>26% per ET                       |
| Sexing X-linked                        | 1167            | 7317                    | 1598 (1.8)                           | 880                           | 19% per OR<br>26% per ET                       |
| Aneuploidy                             | 16806           | 90 404                  | 21543 (1.8)                          | 12071                         | 19% per OR<br>27% per ET                       |
| Social sexing                          | 671             | 4285                    | 993 (2.0)                            | 492                           | 21% per OR<br>29% per ET                       |

OR, oocyte retrieval; ET, embryo transfer procedure.

#### Table IVa

Cycles performed for single gene disorders, data collection I–XIII.

#### ESHRE PGD Consortium data collection XIV-XV: cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013<sup>†</sup>

M De Rycke 🖾 , V Goossens, G Kokkali, M Meijer-Hoogeveen, E Coonen, C Moutou 🛛 Author Notes

Human Reproduction, Volume 32, Issue 10, October 2017, Pages 1974–1994, https://doi.org/10.1093/humrep/dex265 Published: 30 August 2017 Article history ▼

| Indication                                     | X-<br>linked | Autosomal recessive | Autosomal<br>dominant |
|------------------------------------------------|--------------|---------------------|-----------------------|
| Cycles to OR                                   | 1330         | 2838                | 3114                  |
| Clinical outcome                               |              |                     |                       |
| Cycles to ET                                   | 1002         | 2396                | 2402                  |
| hCG positive                                   | 364          | 977                 | 878                   |
| Positive heartbeat                             | 294          | 776                 | 684                   |
| Clinical pregnancy rate (%<br>per OR/% per ET) | 22/29        | 27/32               | 22/28                 |

## **Reporting Outcome of PGD**



- Most clinics and registries report outcome based on the IVF and the PGD as per 1<sup>st</sup> transfer cycle
- This does not inform patients of the likelihood of having an unaffected child when they complete a full PGD cycle (including the transfer of any tested embryos that remain frozen)
- It is important for patients to know the chance of having an unaffected child after one hormonal stimulation for PGD (intention to treat – ITT)



# The likelihood of attaining a live birth after completing a full stimulation, IVF, and PGD cycle

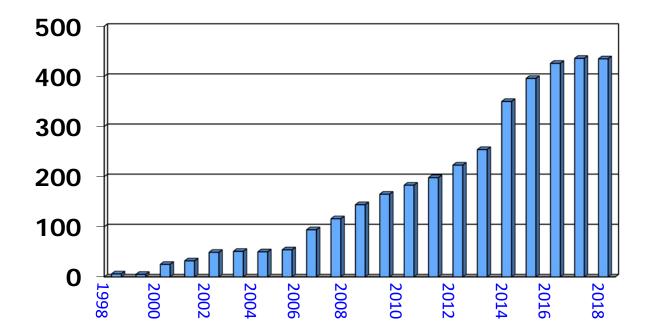
- Includes fresh and related frozen transfers

- Number of frozen cycles may vary (1-6)

- Counted up to the first successful delivery

## **Value of Cumulative Rate**




- Improves patient counselling (realistic expectations)
- Better awareness of possible reasons for a cycle not progressing or the need for multiple transfer cycles
- Better control of multiple pregnancy (one at a time)
- Clear target for funding and service provision
- Needed for comparison of other modalities of avoiding genetic disease



## Likelihood of success

- Type of genetic inheritance
- Age of woman
- Response to stimulation
- Number and quality of embryos that develop
- Number of blastocysts available for biopsy
- Quality of the laboratory handling ICSI, biopsy, and cryopreservation and thaw
- Veracity of the molecular testing result

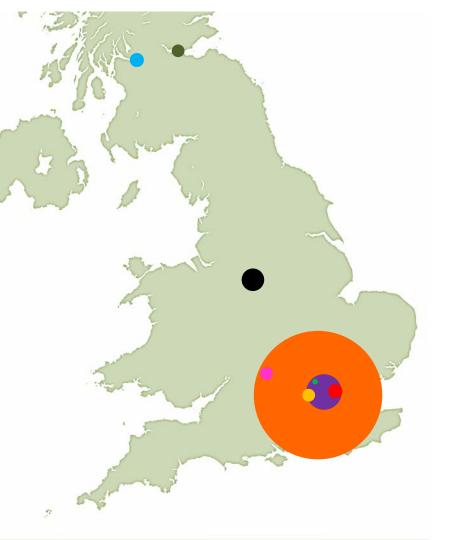
# Annual number of stimulation cycles started for PGD at one UK centre



Guy's and St Thomas' NHS

**NHS Foundation Trust** 




#### UK PGD cycles HFEA 3 year aggregate data

ACU, Guy's Hospital UCH, London CARE, Nottingham The Bridge Centre, London Glasgow Royal Infirmary IVF Hammersmith, London Oxford Fertility Unit Edinburgh ACU ARGC, London



#### UK PGD cycles HFEA 3 year aggregate data

ACU, Guy's Hospital UCH, London CARE, Nottingham The Bridge Centre, London Glasgow Royal Infirmary IVF Hammersmith, London Oxford Fertility Unit Edinburgh ACU ARGC, London



## **Types of PGD cases**

#### NO PGS (PGT-A) undertaken

| No (%)                | 2010        | 2011        | 2012        | 2013        | 2014        | 2015        | 2016 | 2017        | 2018        |
|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------------|-------------|
| Rearrang<br>(FISH)    | 75<br>(41)  | 75<br>(37)  | 74<br>(33)  | 79<br>(32)  | 28<br>(8)   | 14<br>(4)   | 10   | 0           | 0           |
| Rearrang<br>(CGH)     |             |             |             |             | 73 (21)     | 73 (18)     | 90   | 102<br>(23) | 84<br>(19)  |
| Single<br>Gene<br>PGH | 106<br>(58) | 120<br>(61) | 144<br>(65) | 167<br>(65) | 240<br>(69) | 303<br>(76) | 323  | 300<br>(69) | 351<br>(81) |

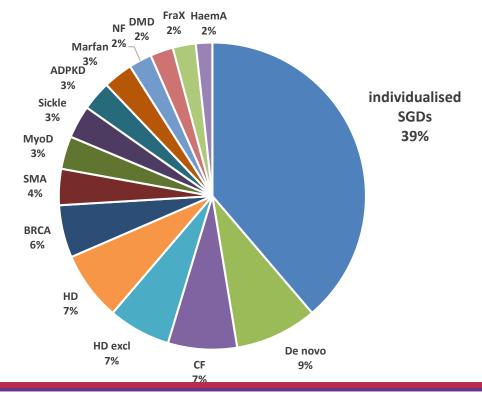
#### Change to Trophoblast Biopsy







#### Main conditions in 2011-2018


|           | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|-----------|------|------|------|------|------|------|------|------|
| CF        | 39   | 28   | 29   | 28   | 25   | 44   | 39   | 34   |
| HD        | 32   | 26   | 39   | 40   | 40   | 39   | 38   | 44   |
| DMD       | 5    | 9    | 16   | 12   | 13   | 6    | 6    | 8    |
| Fragile X | 5    | 10   | 11   | 12   | 11   | 6    | 5    | 5    |
| Hb'pathy  | 4    | 11   | 9    | 9    | 22   | 29   | 25   | 16   |
| MD        | 3    | 8    | 6    | 9    | 13   | 7    | 19   | 14   |

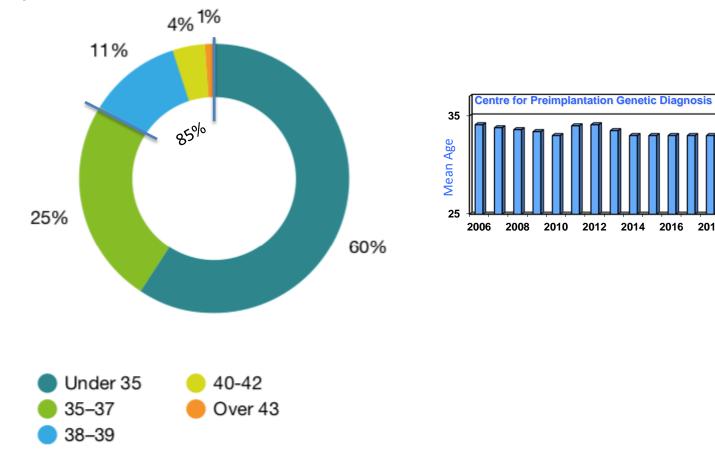




## **Range of SGD cases**

#### 2018: 272 biopsy cases





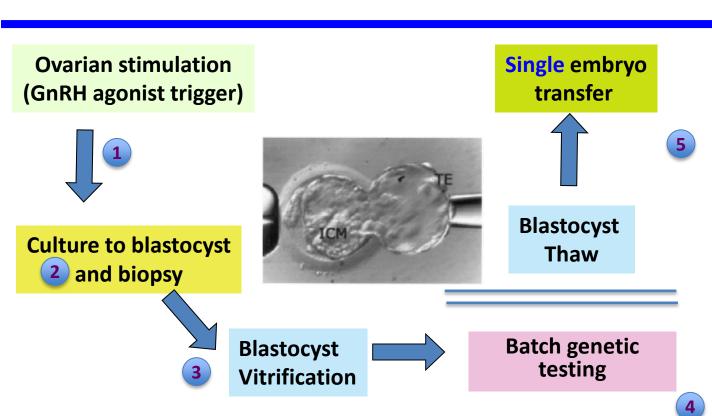

**Centre for Preimplantation Genetic Diagnosis** 



University of London

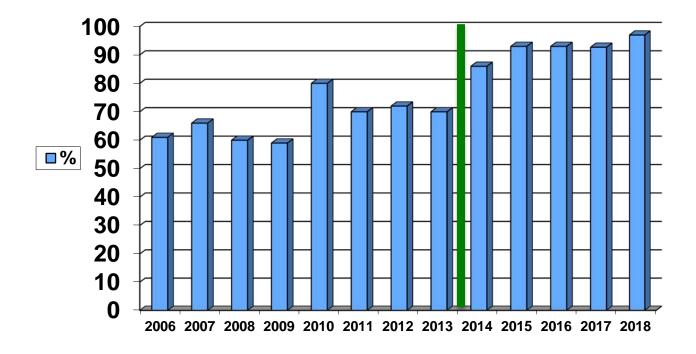
#### Figure 43: PGD treatments by age, 2016 **HFEA Report**




2014

2016

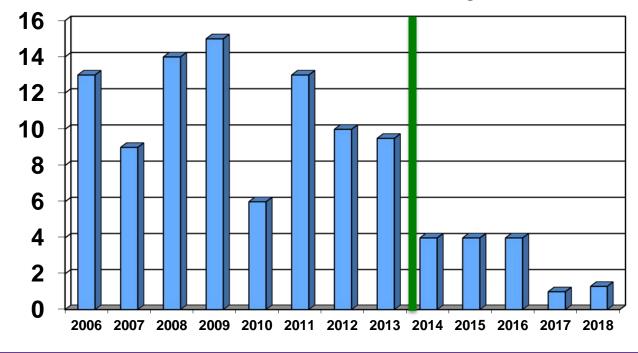
2018


## **PGD Cycle Dislocation**





University of London


## SET is the norm at Guy's

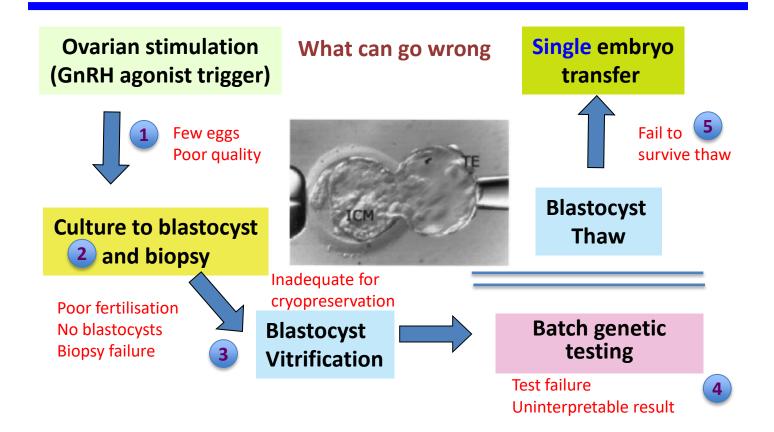




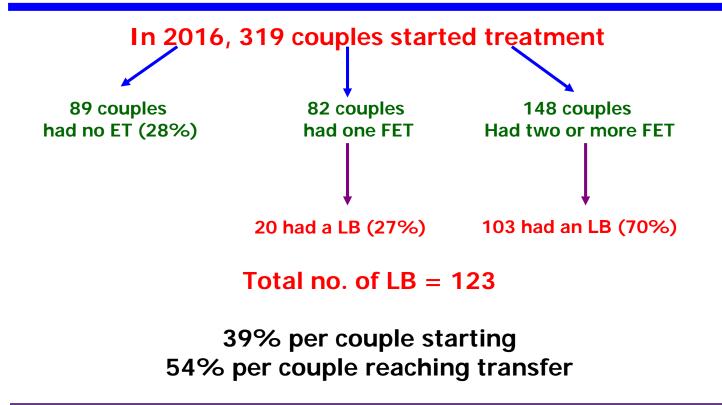


# Multiple pregnancy rate has fallen dramatically









## **PGD Cycle Dislocation**



University of London

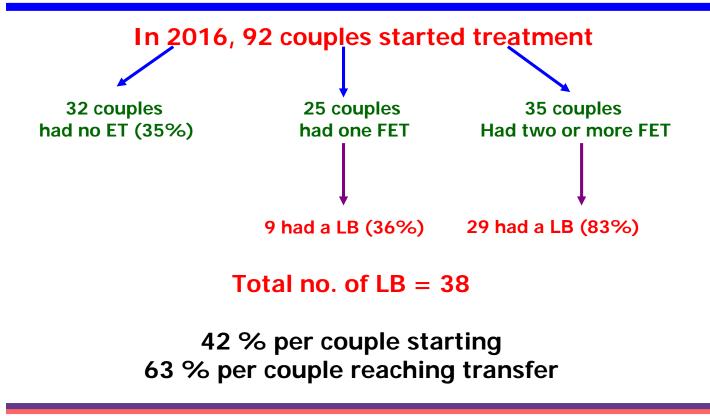


## Cumulative LBR after TBx FOR SGD








# **PGD Cycle Dislocation**

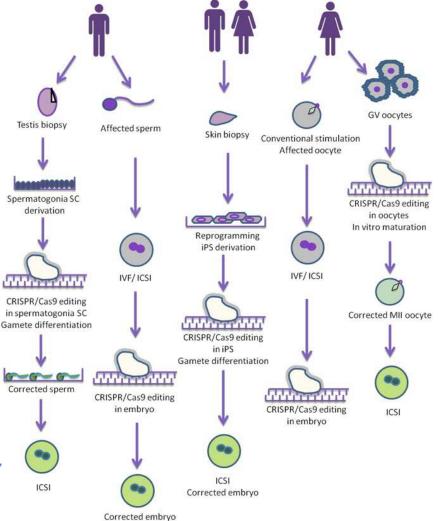


**319 couples started Single** embryo **Ovarian stimulation** 89 (28%) no ET transfer (GnRH agonist trigger) 3 no response 5 2 no eggs suitable 4 Failed to for ICSI survive thaw Blastocyst **Culture to blastocyst** Thaw and biopsy 2) 33 none suitable for ET 13 No fert/cleavage **Batch genetic** 28 None suitable Bx **Blastocyst** testing 3 Vitrification

4

## Cumulative LBR for rearrangements








#### Using Genome Editing in ART

From:

Responsible innovation in Human Germline Gene Editing: ESHG & ESHRE. De Wert et al., Eur J Human Genetics 26, 450-470 (2018)



# **Gene Editing Cycle**



**EDITING HERE Ovarian stimulation Single** embryo Sperm transfer (GnRH agonist trigger) **Oocytes/embryos** 5 Fail to Few eggs Poor quality survive thaw Blastocyst **Culture to blastocyst** Thaw and biopsy 2) Inadequate for cryopreservation Perhaps more unaffected Poor fertilisation **Batch genetic** No blastocysts Blastocyst testing **Biopsy failure** 3 Vitrification Testing / Editing failure 4 Uninterpretable results

Off target effects / mosaics

## Balance of Editing over PGD

#### **Advantages of editing:**

- Perhaps more embryos to biopsy
- Perhaps more unaffected for transfer

#### **Disadvantages of editing**

- Efficiency of editing will have to be checked
- Reliability of the edit will have to be confirmed
- Off target effects will have to measured and controlled

# **Precision & Reliability**

# **Genome Editongue**



# Summary: PGD vs Editing

- There are very few inherited conditions where PGD does not offer hope of an unaffected livebirth
- At present PGD can be effective if done well and using modern testing methods and without PGS
- Factors limiting PGD success generally will be the same as those encountered if gene edited ART undertaken
- The possibility of more edited unaffected embryos at the start is likely to be outweighed by the unknown or unintended effects of the edit and risks to the child and future generations