PERSPECTIVE ON RESISTANCE TO CAR-T: LESSONS FROM BLOOD CANCER

Stephan Grupp, MD, PhD

DISCLOSURES

- Research and/or clinical trial support from Novartis, Servier, Vertex, and Kite
- Study steering committees, consulting, DSMBs, or scientific advisory boards: Novartis, Allogene, Adaptimmune, Juno, CBMG, GlaxoSmithKline, Cellectis, J&J/Janssen, CRISPR/Vertex, Jazz, TCR2, and Cabaletta
- Toxicity management patent managed by U Penn policies

MECHANISMS OF RELAPSE IN ALL AFTER PERSISTENT CD19 CAR

T CELL STATE-FUNCTION RELATIONSHIP

TCF7 gene:

- Encodes for TCF1 transcription factor
- Key in early thymocyte development
- Highly expressed in Tn and Tscm cells
- Role in maintaining stemness in exhausted T cells

IFNg signaling and response genes:

- Short term stimulation of T cell responses
- Chronic IFNg may drive T cell exhaustion (Wherry)
- IRF7 is an important regular of type 1 IFN response

CITE-SEQ OF PRE-MANUFACTURE T-CELLS FROM SIX PATIENTS CAPTURES MAJOR CD4⁺ AND CD8⁺ T-CELL SUBTYPES

Green = single-cell protein expression (CITE antibody-derived tag)

Blue = single-cell RNA expression

UMAP 1

HIGHER PROPORTIONS OF NAIVE AND EARLY MEMORY T-CELLS ARE ASSOCIATED WITH LONGER CAR T-CELL PERSISTENCE

N=60, non-censored patients

Patients with failure of CAR T-cell persistence (<6 months)
Patients with long-term (≥ 6 months) CAR T-cell persistence

EFFECTOR T-CELLS LIVE FAST AND DIE YOUNG

Chen et al Cancer Discovery 2021

#1 problem in ALL CAR T is CD19 escape: Stanford bispecific CD19/CD22 CAR trial – ALL results

Spiegel et al Nature Medicine 2021

American Society of Hematology: 2021 Annual Meeting

CART22-65s Co-Administered with huCART19 in Adult Patients with Relapsed or Refractory Acute Lymphocytic Leukemia

Noelle V Frey, MD, MS¹, Saar Gill, MD, PhD¹, Wei-Ting Hwang, PhD^{2*}, Selina M. Luger, MD, FRCPC¹, Mary Ellen Martin, MD¹, Shannon R. McCurdy, MD¹, Alison W. Loren, MD¹, Keith W. Pratz, MD¹, Alexander E. Perl, MD¹, Julie Barber-Rotenberg, PhD^{3*}, Amy Marshall^{3*}, Marco Ruella, MD¹, Simon F Lacey, PhD³, Joseph Fraietta, PhD^{3*}, Andrew Fesnak, MD^{3*}, Megan O'Brien^{3*}, Theresa Schanne^{3*}, Jennifer L Brogdon, PhD^{4*}, Boris Engels, PhD^{4*}, Bruce L Levine, PhD³, Carl H June, MD³, David L Porter, MD¹ and Elizabeth O. Hexner, MD¹

¹Cellular Therapy and Transplantation, Abramson Cancer Center of The University of Pennsylvania, Perlman School of Medicine

²Department of Biostatistics and Epidemiology, University of Pennsylvania

³Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA ⁴Novartis Institutes for BioMedical Research, Cambridge MA

Different peak expansions correlate with distinct CRS events

Penn Medicine

10

Response

CART19 and CART22: (N=13)

- 13 pts infused
- 11 pts evaluable D28
- 11 CR/CRi (MRD)

Med follow up 11.8 mo:

- One pt with molecular recurrence
- 10 with ongoing CR/CRi

Renn Medicine

From: Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1 ^{c259}T Cells in Synovial Sarcoma

Cancer Discov. 2018;8(8):944-957. doi:10.1158/2159-8290.CD-17-1417

