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Model assumptions

Model 
equations

Fit the model to data

Quantify model predictions and 
parameter values

Use model-based inferences to 
design new experiments

Test and refine model 
assumptions, 

Reduce model parameter 
uncertainties

Experimental 

data
Theoretical 

considerations

Practical 

applications: 

enhancing low 

dose radiation 

risk assessment

Mathematical modeling of ionizing 

radiation effects has a long history

Models have several important 

roles, including making quantitative 

predictions for exposure conditions 

where directly measuring radiation 

effects is difficult (e.g. due to very 

large required sample sizes to 

detect effects statistically)

 Integration of models with 

experimental and observational 

studies in a “feedback cycle” can 

improve hypothesis generation and 

testing, and enhance risk 

estimation

Integration of modeling with experimental and observational 

studies



Example 1: Modeling Cancer risks from space radiation 

using targeted (TE) and non-targeted effects (NTE)
I. Shuryak, A.J. Fornace, R.K. Sachs, D.J. Brenner
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 Astronauts exploring space and distant planets (like Mars) will be 

exposed to complex mixed radiation fields

 Radiation doses (and especially dose rates) for such exposures are 

relatively low:

 However, space radiations (especially densely ionizing heavy 

ions) can be much more biologically damaging per unit dose 

than low-LET radiations

Kim et al 2015



Role of Non-Targeted (Bystander) Effects (NTE)

 At low doses of high-LET radiation, like heavy ions in space, a given cell’s 

nucleus is only rarely traversed by a particle track core

 NTE can play an important role in such situations because unirradiated 

cells respond to signals emitted by irradiated cells

 This process can cause cells and organs to enter into a prolonged 

stressed state and potentially increase risks of cancer and other diseases

Zhou et al. Cancer Res, 2008
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Alpha particles in vitro



Simple TE + NTE modeling approach: 

Applied to APC1638N/+ mouse intestinal tumor data (from Fornace et al., 

Georgetown University) 

Radiation response for tumors/mouse (M): D = dose, B = background, N

and T are NTE and TE parameters, and s is the NTE “slope” parameter:

𝑀 = 𝐵 + 𝑁 1 − exp −𝑠 𝐷 + 𝑇 𝐷

To describe the complex pattern of variability of tumor count data, we used 

the following customized weighted negative binomial distribution, where k is 

number of tumors per mouse, PW(k) is the probability of k, Γ is the Gamma 

function, M is the radiation response function (above), r and q are 

parameters that describe the variance, and Y = k + 1/r:

𝑃𝑤 𝑘 =
[ 1 + 𝑟 𝑀 −𝑌 𝑟𝑘 𝑀 𝑘−1 𝛤 𝑌 𝑀 + 𝑘 𝑞 ]

𝛤 1 + 𝑘 𝛤
1
𝑟

1 + 𝑞

Based on this, the mean number of tumors per mouse (µ) is:

µ =
𝑀 + 𝑞 1 +𝑀 1 + 𝑟

1 + 𝑞
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Model Fits

Blue circles 
represent the 
number of tumors in 
individual mice. 
Black squares and 
bars represent mean 
values and standard 
errors. 
Red curves 
represent model fits. 

A “bump” in tumor 
yield at low doses 
is attributed to NTE 
by the model.
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Two of the Si 
irradiated mice had 
>40 tumors (50 and 
53), these points are 
not shown in the Si 
panel to improve 
visualization. 

The dose response 
non-linearity at low 
doses is more 
prominent for Si 
and Fe ions.

69 keV/µm                                                              148 keV/µm



Look More Closely at Low Doses
 Compare gamma rays (reference) with Si ions (most 

carcinogenic)

 Controls: mean = 3.28 tumors/mouse, SD = 1.63, var/mean = 

0.81

 0.05 Gy gamma rays: mean = 3.84, SD = 1.48, var/mean = 0.57

 0.05 Gy Si ions: mean = 7.11, SD = 3.30, var/mean = 1.53

 0.1 Gy gamma rays: mean = 4.26, SD = 1.36, var/mean = 0.42

 0.1 Gy Si ions: mean = 9.35, SD = 5.38, var/mean = 3.10 8



 RBE = Ratio of doses that produce equal effects

 Another way: Radiation Effects Ratio (RER), compares 

effects of two radiations at the same dose

RBE RERRBERBE RERRERRBE RER

Metrics for Comparing Carcinogenic Effectiveness of 
Different Radiations

 “Horizontal” vs “vertical” scaling

 If the dose responses are both linear, then RBE=RER 

 RBE is not always possible to calculate (e.g. if dose responses 

plateau or decrease at high doses), but RER avoids this issue



RBE estimates for mouse intestinal tumors



RER estimates



Example 2: Applying Similar TE + NTE Concepts to 

Modeling Space Radiation Induced Cognitive Dysfunction
I. Shuryak, D.J. Brenner, S.R. Blattnig, B. Shukitt-Hale, B.M. Rabin
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 Radiation-induced cognitive dysfunction is an important risk for 

human exploration of distant planets like Mars. 

 Although the mechanisms of radiation-induced CNS dysfunction 

are not yet fully understood and are being actively studied, non-

targeted effects (NTE) may be involved in this phenomenon.

 Experimental evidence supporting this hypothesis: body-only 

exposure to space-relevant radiation, which does not traverse 

the brain, can nevertheless affect cognitive functioning in 

rodents. 

 The molecular mechanisms of this phenomenon likely involve 

radiation-induced oxidative stress and neuroinflammation, 

which, in turn, affect neuronal function.
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Data set: Novel object recognition

 We chose to analyze a large published data set on novel 

object recognition (NOR) testing in rats.

 The rats were exposed to multiple space-relevant radiation 

types (H, C, O, Si, Ti and Fe ions), covering wide ranges of 

linear energy transfer (LET) (0.22-181 keV/µm) and dose 

(0.001-2 Gy). 

 NOR is a standard measure of cognitive performance in 

animal studies. 

 The outcome variable in the analyzed data set was the 

fraction of time that a rat spent exploring the novel object 

(Fnov). 

 We log-transformed this variable to create a more 

continuously distributed response variable: 

𝑹 = −𝒍𝒏 𝑭𝒏𝒐𝒗
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Modeling approaches

 We compared 18 dose response model variants based on TE/NTE 

concepts described above using the Akaike information criterion.

 The strongest support was found for a model where NTE saturate 

at low doses (~0.01 Gy) and occur at all tested LETs, whereas TE 

depend on dose linearly with a slope that increases with LET. The 

model structure is:

𝑹 = 𝑩 + 𝑵 (𝟏 − 𝐞𝐱𝐩 −𝒔 𝑫 ) +
𝒊=𝑳𝑴𝑯,𝑽𝑯

𝑻𝒊 𝑫𝒊

 Here D is radiation dose, R is the response variable, B is background, 

T is a parameter for TE, N is a parameter for NTE, and i is the LET 

category (L=0.22, M=13-16, H=41-50, VH=106-181keV/µm). 

 The NTE “slope” parameter s attained a very high value with a very 

large uncertainty, so we fixed it at 103 Gy-1. This allows the response to 

rapidly increase and saturate at low doses, but retains the model’s 

properties as a smooth function. 

 Three other model variants had support values close to the best model 

(ΔAICc <6).The first two assume more detail for the linear TE slope 

variation by LET categories, and the last one assumes a quadratic TE 

dose response.
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Best-supported model fits (red). Blue squares = mean response 

values. The model assumes that the TE dose response “slope” 

differs by LET category, whereas NTE occur at all LETs. 

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Dose (Gy)

R
e
s
p

o
n

s
e

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Dose (Gy)

R
e
s
p

o
n

s
e

LET < 106 keV/µm    LET ≥ 106 keV/µm



16

NTE contribution (absolute, red dashed curves, and fractional, 

blue dashed curves) to the dose response predictions (black 

curves) of the best-supported model. Baseline response in unirradiated 

rats (parameter B) was subtracted for improved visualization. 
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Some Thoughts About Other Endpoints: Cell Killing 

I. Shuryak, M.N. Cornforth

 Cell killing by radiation is commonly described by the linear quadratic 

(LQ) model, assuming a Poisson distribution of lethal events/cell.

 However, overdispersion of lethal events/cell (i.e. variance/mean >1) is 

known to occur for high-LET and sometimes even low-LET irradiation.

 After analyzing several cell killing and chromosome aberration data 

sets (Front Oncol. 2017 Dec 21;7:318; Int J Radiat Biol. 2021;97(1):50-59), we found 

that changing the error distribution (e.g. from Poisson to negative 

binomial), while keeping the LQ dose dependence for the mean, 

improved LQ model performance.

 This approach improved estimation of the α parameter, which can 

produce more reliable predictions of low dose/dose rate effects 

that are of major concern for radiation protection. 
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Cell type DU145a CP3a U373MGa CHOAA8a Yeastb Yeastb

Poisson model 

parameters

α (dose-1) 0.22 0.14 0.16 0.18 1.24 9.10

95% CIs
0.20 0.10 0.14 0.17 0.79 7.85

0.24 0.18 0.18 0.20 1.70 10.38

α/β (dose) 18.59 3.22 8.04 10.04 0.46 1.63

95% CIs
14.87 2.28 6.14 8.37 0.29 0.86

22.87 4.89 10.53 12.05 0.84 2.75

NB model 

parameters

α (dose-1) 0.16 0.00 0.08 0.18 0.00 2.05

95% CIs
0.12 0.00 0.04 0.16 0.00 0.42

0.20 0.05 0.12 0.20 0.11 3.65

α/β (dose) 5.70 0.00 1.68 9.84 0.00 0.04

95% CIs
3.15 0.00 0.88 8.20 0.00 0.02

10.26 0.01 4.31 14.17 0.00 0.23

Cell type DU145 CP3 U373MG CHOAA8 Yeast Yeast

Radiation type x-rays (250 kVp)
x-rays (70 

kVp)

241Am α-

particles

Poisson model 3.0×10-3 6.5×10-5 8.0×10-5 0.532 2.0×10-16 1.0×10-11

NB model 0.253 0.468 0.184 0.130 5.8×10-6 0.389

MNB model 0.319 0.427 0.230 0.136 2.5×10-6 0.610

PLQ model 0.334 0.102 0.324 0.129 7.9×10-10 2.5×10-4

2C model 0.0909 2.89×10-3 0.262 0.0728 ~1.00 1.3×10-3
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 We analyzed yeast DSB rejoining data 

using a new radiation-dependent (RD) 

model for three DSB rejoining rate 

classes: quickly, slowly and unrejoinable

 Radiation converts DSBs from one class 

to another

 We used yeast data for to compare the 

performances of the RD model with a 

more “standard” two-lesion kinetic (TLK) 

model

 The TLK model also has three DSB 

classes, but no radiation-dependent 

conversion between them

 The RD model described all tested 

low-LET and high-LET radiation data 

significantly better than the TLK 

model
Shuryak, PLOS One, 2016.

DNA double strand break (DSB) repair 

 There is some evidence that DSB repair pathway choice and rate(s) can 

depend on radiation dose / dose rate.

 For example, this can be seen is yeast (S. cerevisiae) which mostly rely on 

homologous recombination (HR).
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• So, in yeast DSB rejoining is dose-dependent

• In mammalian cells the evidence is less clear, but some studies suggest 

this, which is potentially relevant for low dose radiation effect predictions

From Neumaier et al. PNAS, 109(2):443-8, 2012.

“When G2-phase cells are irradiated, only about 10 % of the induced DSBs 

break the chromatids. At doses <2 Gy, HR is the main option in the processing 

of the subset of DSBs generating chromatid breaks and that a pathway switch at 

doses between 4–6 Gy allows the progressive engagement of c-NHEJ. “



Conclusions

Mathematical models of radiation effects can have many 

forms and varying degrees of mechanistic detail

Models can be quite useful for making predictions at low 

radiation doses / dose rates, where radiation effects are 

difficult to detect and measure

In general, such models do not form a complete description 

of the complex biological system, but focus on specific 

aspects of radiation effects

The simplifying approximations provide insights into which 

components of the system may be responsible for a 

particular behavior (e.g. NTE vs TE)

These insights can potentially generate testable hypotheses 

and improve scientific understanding, as well as accuracy of 

predictions

Thank you very much for your interest!


