Valley Fever: Technology to increase sensitivity of diagnostics

Amanda Burnham-Marusich, PhD

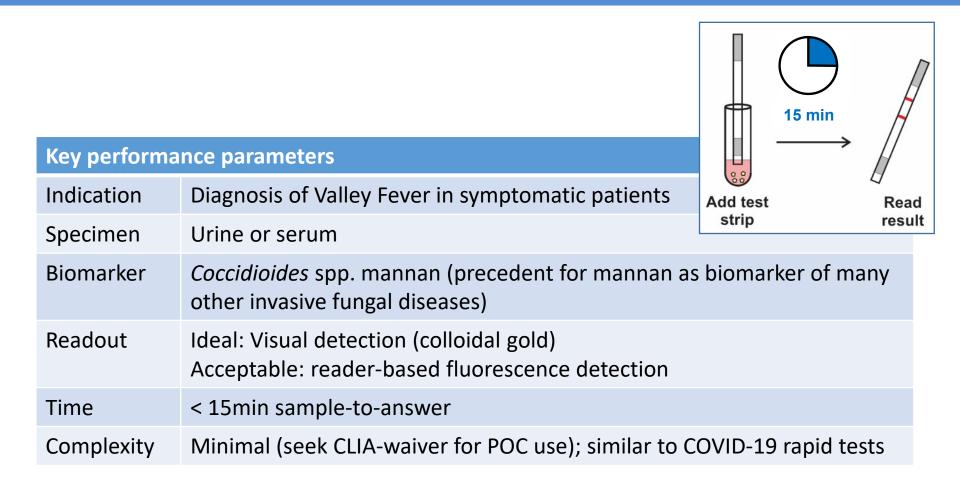
University of Nevada, Reno School of Medicine

Unmet need: rapid diagnosis soon after symptom onset

What delays diagnosis with current tests?

- Turnaround time (not point-of-care)
- Serial testing to achieve needed clinical sensitivity

Consequences of delayed diagnosis:


- No diagnosis (patients lost to follow-up)
- Unnecessary antibiotics (patient and community impact)
- Additional blood work, scans, etc. that could be pre-empted by a prompt positive VF diagnosis
- Increased morbidity/mortality risk

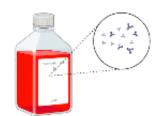
Immunoassays: serology vs. antigen-detection

Serology: detects patient antibodies to Coccidioides antigens

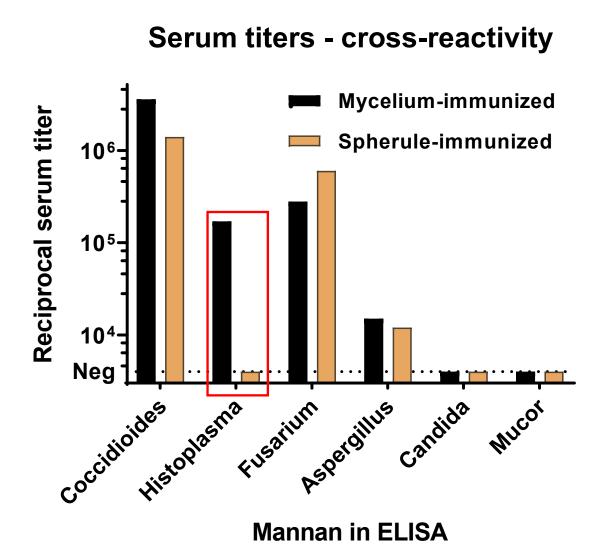
- Con: Must wait for patient to generate antibody response to infection; positive tests can be due to <u>antibodies from past infection</u>
- Pro: Once generated, patient antibodies are typically abundant, so analytical sensitivity is theoretically not an issue
- Antigen-detection: detects Coccidioides antigens via labmade antibodies
 - Con: Microbial antigens are typically present at low concentrations, so exquisite (pg/mL) analytical sensitivity is ideal
 - Pro: Can be used early during infection (at time of symptom onset); reflect current patient status
 - Both are suitable for lateral flow immunoassay platform

Proposed solution: antigen-detection LFIA

Develop library of mAbs to Coccidioides mannan


1. Immunize for high titers

2. Screen: Indirect ELISA


Cell line stability & monoclonality
Specificity to *Coccidioides* Inclusivity across
Coccidioides spp.

Affinity

3. Prototype development: antigen-capture ELISA & LFIA

Spherule-immunized splenocytes could be rich source of *Cocci*-specific mAbs

	Purified fungal mannan coated onto ELISA plate									
	Coccidioide	es posadasii	Coccidioides immitis		Histoplasma	Fusarium		Candida	Mucor	Rhizopus
mAb	Mycelium	Spherules	Mycelium	Spherules	Histop	Fuse	Aspergillus	Can	Ми	Rhiz
7B12	++++	++++	++++	++++	-	-	—	-	—	-
11C9	++++	++	+++	+	+	+	_	-	-	_
4E3	++++	++++	++++	++++	+++	+++	-	-	+	+
6C12	++++	++++	++++	++++	+++	+++	-	-	_	-

Ideal mAb has high inclusivity across Coccidioides spp. and high specificity to Coccidioides genus

Antigen-detection ELISA with mAb 7B12

Mannan <i>C. immitis</i> (RS) - mycelia <i>C. immitis</i> (RS) - spherules	LOD (ng/ml)
, , ,	
C. immitis (RS) - spherules	1
	1
<i>C. posadasii</i> (Silveira) - mycelia	2
C. posadasii - spherules	2

Specificity	
Mannan	LOD (ng/ml)
Histoplasma capsulatum (Hc17)	>200
Histoplasma capsulatum (G217B)	>200
Candida albicans	>200
Candida auris (CAU-07)	>200
Fusarium solani	>200
Aspergillus fumigatus	>200
Mucor circinelloides	>200

✓ Inclusivity across *Coccidioides*

✓ Analytical specificity to *Coccidioides*

Next: move to LFIA platform and enhance sensitivity (analytical sensitivity drives clinical sensitivity)

Strategies to increase sensitivity

Detector mAb labeling options

- colloidal gold < gold nanoshells < Europium (best sensitivity)</p>
- Alternative conjugation chemistries
 - Passive adsorption vs. covalent (NHS-ester or site-directed)
 - Enrich analyte concentration in specimen
 - Concentration (urine); magnetic immunoprecipitation (urine/serum)

Trade-offs for better sensitivity:

- Higher cost
- Electronic reader required (cost, electricity)
- Test complexity (need to be careful to maintain POC & CLIA-waiver)

LFIA readers for europium now reaching POC

Original options were expensive and research-grade (or cheap but unregulated UV pen)

- Now small footprint, lower cost, simplified user interface and data interpretation (+ electronic records and reporting)
 - Quidel Sofia

C2Sense HALO

Summary

- Antigen-detection LFIA: technology to enhance VF diagnosis (especially POC diagnosis soon after symptom onset)
- Multiple strategies for increasing LFIA clinical sensitivity (balance enhanced sensitivity vs. POC & accessibility)
- Clinical needs determine which strategies are feasible
- Considerations for future discussion:
 - Use of reader acceptable? (cost + electricity)
 - How big a window of clinical utility? (from symptom onset to when?)
 - Screening or rule-out usage? (high specificity + moderate sensitivity vs. extremely high sensitivity)

Acknowledgements

mAb & immunoassay development

- Jacque Kelly
- Savanah Bloomquist
- Ashley Marshall
- Michael Mash
- Isabelle Kvoltchouk

Coccidioides spp. cultures

- John Galgiani Laboratory
 - Lourdes Lewis
 - Tao Peng
 - Fariba Donovan

University of Nevada, Reno School of Medicine

Purification of fungal mannans

- Thomas Kozel Laboratory
 - Kathleen Zayac
 - Ashley Marshall

THE OHIO STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

Histoplasma spp. extracts

Chad Rappleye Laboratory

National Institute of Allerav and nfectious Diseases

SBIR Phase I/II to DxDiscovery 75N93022C00028/75N93020C00035

burnham-marusich@DxDiscovery.com