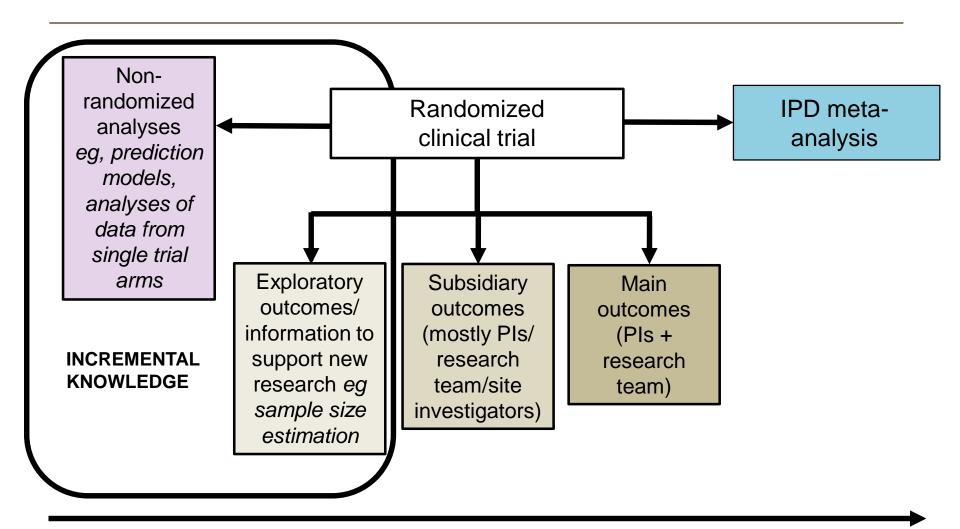


National Academies of Science, Engineering and Medicine: Workshop on Sharing Clinical Trial Data

Looking forward: extracting value from shared clinical trial data to enhance patient care


incentivizing data sharing and reuse: A researcher perspective

Colin Baigent

Professor of Epidemiology

Director, Medical Research Council Population Health Research Unit at the University of Oxford

How we learn something <u>new and important</u> from shared clinical trial data?

What can IPD meta-analysis provide that is new and important?

EXAMPLE: Cholesterol Treatment Trialists' (CTT) Collaboration

- Long-term project: CTT established 1994; initial protocol published 1995
- Individual participant data (IPD) from statin trials with ≥1000 participants; ≥2 years scheduled follow-up
 - Standardised data request: baseline data, major vascular events, cancer, all cause mortality, demographics, lipid subfractions at baseline, 1 year, final visit
- 28 included statin trials (~175,000 participants)
- 10 major publications (6 in Lancet): >10,000 citations

What can IPD meta-analysis provide that is <u>new and important</u>?

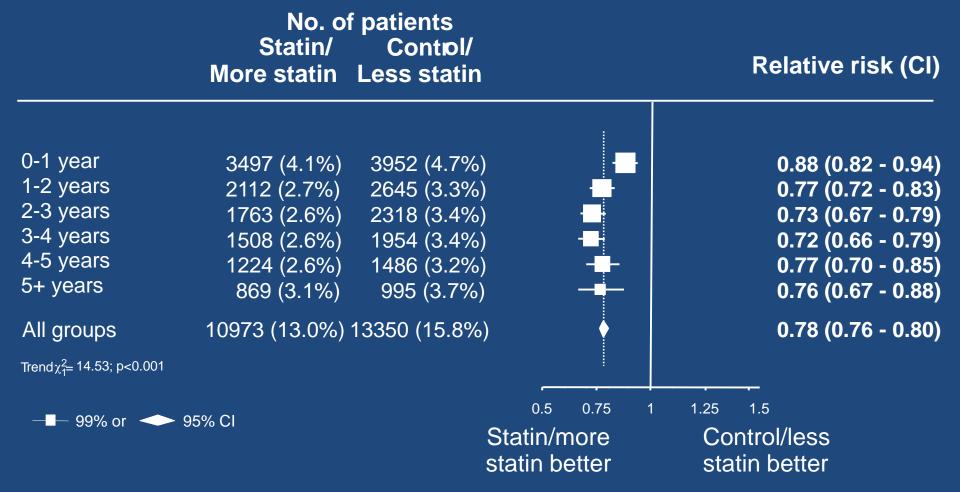
Effects on <u>particular outcomes</u>

First CTT cycle: Effects on MAJOR VASCULAR EVENTS per mmol/L LDL cholesterol reduction

	Events (%)			RR (CI) per 1 mmol/L		
Endpoint	Treatment	Control		reduction in LDL-C		
Non-fatal MI	2001 (4·4)	2769 (6·2)		0.74 (0.70 – 0.79)		
CHD death	1548 (3·4)	1960 (4·4)		0.81 (0.75 – 0.87)		
Any major coronary event	3337 (7·4)	4420 (9·8)	Φ	0·77 (0·74 – 0·80)		
CABG	713 (1·6)	1006 (2·2)		0·75 (0·69 – 0·82)		
PTCA	510 (1·1)	658 (1·5)		0.79 (0.69 – 0.90)		
Unspecified	1397 (3·1)	1770 (3.9)		0.76 (0.69 – 0.84)		
Any coronary revascularisation	2620 (5·8)	3434 (7·6)	Φ	0·76 (0·73 – 0·80)		
Haemorrhagic stroke	105 (0·2)	99 (0·2)		1.05 (0.78 – 1.41)		
Presumed ischaemic stroke	1235 (2·8)	1518 (3·4)		0.81 (0.74 – 0.89)		
Any stroke	1340 (3.0)	1617 (3·7)	Φ	0.83 (0.78 – 0.88)		
Any major vascular event	6354 (14·1)	7994 (17·8)	•	0·79 (0·77 – 0·81)		
—■— RR (99% CI)		(D·5 1·0 Treatment Co	1.5 ntrol		

better

better


What can IPD meta-analysis provide that is new and important?

- Effects on <u>particular outcomes</u>
- Timing of treatment effects

CTT meta-analysis: Effects on MAJOR VASCULAR EVENTS per mmol/L LDL-C reduction, by year

What can IPD meta-analysis provide that is <u>new and important</u>?

- Effects on <u>particular outcomes</u>
- Timing of treatment effects
- Definition of whom to treat

More vs less trials: Proportional effects on MAJOR VASCULAR EVENTS per mmol/L reduction in LDL cholesterol, by baseline LDL cholesterol

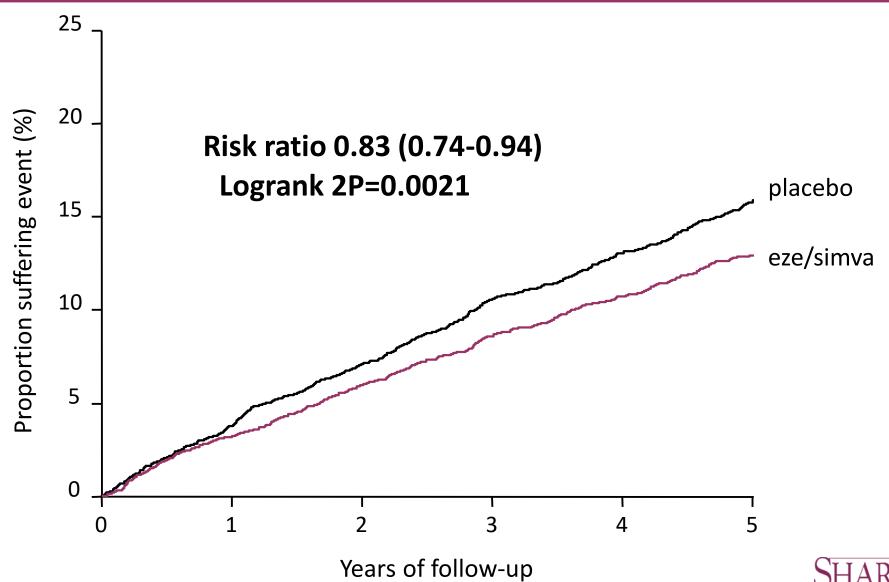
No. of events (% pa) Relative risk (CI) More statin **Less statin** 704 (4.6) 795 (5.2) 0.71(0.52 - 0.98)<2 1189 (4.2) 1317 (4.8) 0.77(0.64 - 0.94) \geq 2,<2.5 0.81 (0.67 - 0.97) 1065 (4.5) 1203 (5.0) ≥2.5,<3.0 0.61(0.46 - 0.81)517 (4.5) 633 (5.8) ≥3,<3.5 303 (5.7) 398 (7.8) 0.64(0.47 - 0.86)≥3.5 0.72(0.66 - 0.78)3837 (4.5) 4416 (5.3) Total 0.5 0.75 1.25 1.5 - 99% or **→** 95% CI More statin Less statin

better

better

What can IPD meta-analysis provide that is <u>new and important</u>?

- Effects on <u>particular outcomes</u>
- Timing of treatment effects
- Definition of whom to treat
- Unanswered questions needing new trials



CTT: Previous lack of evidence for reduction in MVE risk in people with eGFR below 30 mL/min/1.73m²

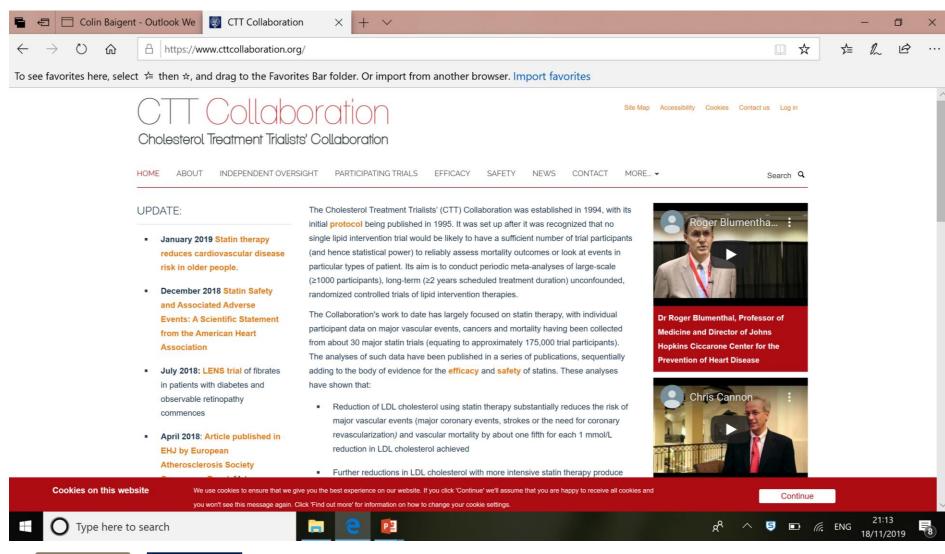
Estimated GFR	No. of events				
(mL/min/1.73m ²)	Statin	Control			Relative risk (CI)
			i		
< 30	46 (4.8%)	43 (6.1%)		>	0.82 (0.44 - 1.55)
≥30 < 45	313 (4.7%)	393 (6.0%)	· · · · · · · · · · · · · · · · · · ·		0.77 (0.65 - 0.93)
≥45 < 60	1154 (3.9%)	1480 (5.1%)	_ =		0.79 (0.72 - 0.86)
≥60 < 90	3416 (3.2%)	4244 (4.1%)			0.80 (0.76 - 0.84)
≥90	671 (2.9%)	915 (4.1%)	_ 		0.73 (0.65 - 0.82)
Total	5802 (3.1%)	7344 (4.0%)	\		0.78 (0.76 - 0.81)
—————————————————————————————————————	95% CI		0.4 0.6 0.8	1 1.2 1.4	
Trend test: χ^2 on 1	df = 0.61 ; p=0.43	3	Statin/more better	Control/less better	

Key outcome: Major Atherosclerotic Events

S13

EXAMPLE: Cholesterol Treatment Trialists' (CTT) Collaboration

- Long-term project: CTT established 1994; initial protocol published 1995
- Individual participant data (IPD) from statin trials with ≥1000 participants; ≥2 years scheduled follow-up
 - Standardised data request: baseline data, major vascular events, cancer, all cause mortality, demographics, lipid subfractions at baseline, 1 year, final visit
- 28 included statin trials (~175,000 participants)
- 10 major publications (6 in Lancet): >10,000 citations
- Current project → existing CTT dataset extended to include <u>all</u> recorded adverse events plus other complementary data (eg, laboratory data, co-medication, reasons for stopping)


CONCLUSIONS AND PROPOSALS

- IPD meta-analyses can yield new and important insights, yet datasharing platforms may be impractical for such research – data held locally provide the necessary flexibility
- We need new research that <u>classifies</u> and <u>evaluates</u> data-sharing outputs to date → let's move from anecdote to rigour
- The focus should switch from trying to make all trial data available to a focus on providing the most informative data (eg pivotal studies)
 - Many trials in data-sharing platforms will never be requested
 - Many sub-analyses eg, analyses of data from a single trial arm, may be seriously biased, and are of dubious value

More information at www.cttcollaboration.org

