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martian poles holds a record of terrestrial-planet climate change
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NPLD: 1.1 million km3

Significant differences also exist between the two Polar Layered Deposits in age, dustiness, and surface materials.
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The North Pole is capped with large-grained dust-free water |ce a Iayer in the maklng
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The North polar cap dominates the martian water cycle and, by extension, all water ice stability
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Ancient layers and present climate are better characterized than ever

- Transport of dust and water can be measured

Vertical water distribution and wind speeds unknown
though...
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Smith et al. (2016) Becerra et al. (2016; 2017; 2019)

Overarching problem... we can’t connect layer properties with climate properties



There are several steps to connect the snapshot of current climate to the polar record.
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Mars Landers have investigated 2/3 of relevant terrain types

Regolith-coveredice : Regolith-coveredice Surfaceice
v Regolith S
Pore-filling ice Pore-filling ice
A

~ Viking Lander 2 — 48N

Phoenix — 69N

Essentially the same kind of site
from an ice/climate perspective
i.e. not polar missions




Measurements needed on the surface of the NPLD

(a Keck Workshop, ICE-SAG mash up with some extra proposal studies, and MASWG example
mission arc #3 included)

Meteorological package plus other surface/atmospheric characterization:
* Pressure, Temperature, Humidity Survival
» Stablelsotopes through
PO e Surfacewindspeeds T h |
Boundary-Layer & e P the polar
R * Radiative forcing night
» Deposition rates of dust, CO, and water. |

Drill 1-2m to characterize material as a function of depth:
e Porosity, dust fractions
Layer Formation e Water ice grain sizes
Processes e Stableisotopes
* Cosmogenic isotopes
e \Vertical structure

Connect Surface Drill or use GPR to connect these surfaceresults to orbital radar
Layersto the e 10s of meters
Deeper record e If using GPR then frequency must resolve structurein the first 1-2 m as well




Low Surface roughness
No boulders Ay S
Low elevation e . = Smithet al. (2016)
Precision landing irrelevant |
24.5 hr sunlight in summer

Extremely stable temperatures

Avoiding spraying the surface with hydrazine is preferred — limits delivery system options



Mars Polarprop: Distributed Micro-landers to Investigate the
Polar Ice Caps and Climate of Mars &)

P.O. Haynel, S. Byrne?, |.B. Smith3,D. Banfiled4, R. L. Staehle®
lUniversity of Colorado, Boulder, CO. Paul.Hayne@Colorado.edu 2University of Arizona, Tucson, AZ.
3Planetary Science Institute, Denver, CO.*Cornell University, Ithaca, NY. SNASA — Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA.

e One or more “micro-landers”

deliver ~1 kg payload to
surface of PLD
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M = P R ESS . Mars-Polar Reconnaissance of Environment and Subsurface Stratigraphy

Land and drill to unlock the climate history of the Mars
Polar Layered Deposits (PLD)

Science Objectives:
e Determine present and recent accumulation rates of the polar deposits
e Characterize surface & subsurface environment, materials & stratigraphy
® Relate measurable quantities to recent climate change on Mars.

Unique Capabilities: Year-round meteorology. Drill 0.5-1m and deliver
samples from multiple depths. GPR to link in situ results to orbital data from
SHARAD radar

Mission Architecture

Re-use Pathfinder landing system to
deliver 200 kg w/ no precision
landing requirements

0.5 m drill delivers samples to
instruments

Energy-intensive summer activities
benefit from constant solar power
Winter meteorology enabled by
RHUs and tech-demo: wind turbines

Landing site: North polar Iﬁ'yere&-'
deposits, elev. -2 to -4 km

Instruments and Accommodation

e Surface/subsurface: High-frequency GPR, near-IR/Raman
spectrometer, TLS, Wet Chemistry, APXS, Microscopiclmager,
surface and borehole cameras, TECP.

e Meteorology: DiAL, Sonic Anemometer, Bolometer(s),
Thermogravimeter

Resources:

e Mass: 50 kg for Instruments & Sample handling (drill)
150 kg for other lander systems




M = P R ES S . Mars-Polar Reconnaissance of Environment and Subsurface Stratigraphy

*Threshold
Payload

Current
Climate

Climate
Record

Baseline Payload Element

Heritage

Purpose

Mature designs (MARBLL) and simpler flight

U | Bl models (Phoenix lidar)- TRL high WSV T T

T | Sonic Anemometer TRL 5 (clear path to TRL 6) Surface Windsin 3D and eddy fluxes
Bolometer(s) Flighton orbiters: TES Downwelling VIS & IR flux
Thermogravimeter Common & robust terrestrial instrument Mass of seasonal frost and deposited dust

T | MET package Flight on Phoenix, Curiosity etc... Pressure, Temperature, Humidity

T  Drill- 10s of cm Components @ TRL5 or 6 - Honeybee Robotics ~ Sample acquisition and delivery

T | High-frequency GPR M2020 - RIMFAX Connect orbital and in-situ stratigraphy

T | near-IR/Raman spectrometer M2020 - SHERLOC (UV) Salts, silicates, oxides (soluble and insoluble)

T | TLS Flight on Curiosity - SAM O, C & H (water+CQO2) Isotopes, humidity
Wet Chemistry Flighton Phoenix - MECA Soluble species

T | APXS Flighton MER, Curiosity Elemental composition of non-ice material

T | Microscopic Imager Flighton MER, Curiosity Particle-size distribution, porosity

T | Color Surface stereo cameras Flight on Phoenix (and many others) Landing site geology - winter frost depths

TECP

Flight on Phoenix (improvements needed)

Thermal properties - modeling mass balance



More expensive, but better, drilling options
(Thanks to Kris Zacny at Honeybee Robotics)

Trident— 1-2mclass drill
e 1inchborehole
* Fiber optic or separate logging tool also possible

WATSON: Wireline Analysis Tool for Subsurface Observation of
Northern-ice-sheets

* Inch-wormtechnique W

) < Umbilical
e Reached 110min Greenland test
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Chronos — Scout proposal from the mid-2000s

Naghaicmater Fbar Opéic
* Thermal drill with oo i —Hfl] oA
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Summary

e Terrestrial-Planet climate change is a pressing scientific issue

e Although large gaps in understanding remain, much progress has been made in
measuring martian polar layers and present-day climate

e A way to link the climate and the layers remains elusive and requires a lander on the
North Polar Layered Deposits

;f  Three required elements:
1. Near surface meteorology including during polar night
2. Drilling to 1-2m, with detailed compositional analysis as a function of depth

I ¥i[

3. A way to link the upper 1-2m to orbital radar datasets or a deep drill-core

e Possibilities for progress exist from Small-spacecraft up to Flagship level.
* A small surface mission should come before flagship-level deep drilling
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