Breakout Session

Xingxu Huang ShanghaiTech University Huangxx@shanghaitech.edu.cn

Base editing provides a more precise strategy

Perform programmable editing of a target base in genome by deamination without double-stranded DNA cleavage.

Komor et al. Nature 2016; Gaudelli et al. Nature 2017

Base pair changes required to model naturally-occurring human SNPs

Current editable naturally-occurring human SNPs

PAM	Corrected by ABE	Precise correction by ABE (10.5%)	Corrected by CBE	Precise correction by CBE (11.9%)
Total	126,225,392 (100%)	58,434,362 (100%)	122,110,677 (100%)	66,062,154 (100%)
NG (xCas9/SpCas9-NG)	111,793,856 (88.6%)	50,642,619 (86.7%)	106,222,425 (87.0%)	55,003,882 (83.3%)
NGG (SpCas9)	36,118,948 (28.6%)	15,657,121 (26.8%)	31,682,039 (25.9%)	15,035,152 (22.8%)
NGA (VQR SpCas9)	44,155,390 (35.0%)	16,213,326 (27.7%)	45,180,539 (37.0%)	21,815,188 (33.0%)
NGAG (EQR SpCas9)	14,192,236 (11.2%)	5,208,662 (8,9%)	13,033,871 (10.7%)	6,175,091 (9.3%)
NGCG (VRER SpCas9)	2,240,558 (1.8%)	977,152 (1.7%)	1,667,471 (1.4%)	673,810 (1.0%)
NNNRRT (KKH SaCas9)	46,024,868 (36.5%)	17,655,489 (30.2%)	54,115,184 (44.3%)	26,168,072 (39.6%)
NNGRRT (SaCas9)	11,402,588 (9.0%)	4,744,162 (8.1%)	12,468,625 (10.2%)	5,973,411 (9.0%)

Precise correction: only 1 editable base in edit window (from positions 4 to 7 for ABE, or 4 to 8 for CBE) (22.4%)

Base pair changes required to correct pathogenic human SNPs

Current editable pathogenic human SNPs

PAM	Corrected by ABE	Precise correction by ABE (21.5%)	Corrected by CBE	Precise correction by CBE (4.1%)
Total	10,636 (100%)	6,810 (100%)	3,437 (100%)	1,312 (100%)
NG (xCas9/SpCas9-NG)	9,806 (92.2%)	6,148 (90.3%)	3,183 (92.6%)	1,140 (86.9%)
NGG (SpCas9)	3,853 (36.2%)	2,357 (34.6%)	1,236 (36.0%)	383 (29.2%)
NGA (VQR SpCas9)	3,524 (33.1%)	1,916 (28.1%)	1,395 (40.6%)	416 (31.7%)
NGAG (EQR SpCas9)	1,139 (10.7%)	611 (9.0%)	446 (13.0%)	116 (8.8%)
NGCG (VRER SpCas9)	394 (3.7%)	235 (3.5%)	178 (5.2%)	51 (3.9%)
NNNRRT (KKH SaCas9)	3,311 (31.1%)	1,786 (26.2%)	1,287 (37.4%)	425 (32.4%)
NNGRRT (SaCas9)	846 (8.0%)	439 (6.4%)	319 (9.3%)	102 (7.8%)

Precise correction: only 1 editable base in edit window (from positions 4 to 7 for ABE, or 4 to 8 for CBE) (25.6%)

Challenges for BE

- Delivery
- Detection

Preparation

Belivery
Base-editing product purity
Generation of indels
Off-target editing

- Editing window and bystander edits

Yin et al. Nat Rev Drug Dis. 2017, 16: 387-399. Rees & Liu. Nat Rev Genet. 2018, 19(12): 770-788.

To improve BE

Rees & Liu. Nat Rev Genet. 2018, 19(12): 770-788.

To test different delivery strategies

Yin et al. Nat Rev Drug Dis. 2017, 16: 387-399.

To develop different detections & analysis

Tripronuclear embryos

Individual blastomere

To develop base editing platforms

THANK YOU

