

Perspective on Contamination from the Small Bodies Assessment Group (SBAG)

SBAG seeks broad planetary science community input on small bodies and missions to small bodies.

Stefanie Milam (NASA/GSFC), Julie Castillo-Rogez (NASA/JPL), Jason Dworkin (NASA/GSFC), Bonnie Buratti (NASA/JPL), Paul Abell (NASA/JSC), Henry Hsieh (PSI), Jennifer Scully (NASA/JPL), Maitrayee Bose (ASU), and the SBAG Steering Committee

NAS Committee on Planetary Protection 2021 Fall Meeting – December 1, 2021

Preliminary disclaimers

- This presentation is based solely on the input of:
 - SBAG steering committee members
 - Select community members involved in current missions or concepts
 - White papers submitted to the Planetary Decadal survey (publicly available)
- SBAG can propose to establish a study team (SIT) to provide a more community-based recommendation on this subject.
 - Staged input
 - 1. Initial study from survey data and input from funded missions and studies
 - 2. Post-flyby (Lucy) and Planetary Defense (DART) report
 - 3. Post-sample return analysis (Hayabusa2, OSIRIS-REx)

Suggest high level definitions, laws, and legislation made readily available to the community.

Current Classification

Mission Type	Types of Planetary Bodies	Types of Bodies	Category
Flyby, Orbiter, Lander	PP reqs not obligated as there is no origin-of- life interest.	Ur m Vesta astorena	<u> </u>
Flyby, Orbiter, Lander	Bodies where there is an origin-of-life interest and rare chance that contam. carried by a spacecraft could jeopardize future missions.	Ve NEAScout ts; As target, Pluto, Se Charon, Triton	
Flyby, Orbiter	Bodies where there is an origin-of-life interest and there is a significant chance that contam. carried by a spacecraft could jeopardize future missions. PP documentation and implementation required.	Mars; Europa; Enceladus	111
Lander, Probe	Bodies where there is an origin-of-life interest and there is a significant chance that contam. carried by a spacecraft could jeopardize future missions. PP documentation and implementation required. Category IV missions for Mars are subdivided into IVa, IVb, and IVc.		IV

3

Scientific Knowledge SHOULD drive PP Requirements for Future Missions

4

- Future surveys, fly-by missions, sample return, and Planetary Defense rendezvous will enhance the fundamental understanding of not only a class of object, but also help distinguish special or unique targets.
- For example, the Dawn mission to Ceres reveled numerous geologic/surface features that were not evident from remote sensing.
 - Key target for Astrobiology
 - Priority for lander

Scary Cat's: Cat I vs Cat II

- Cat II entails extra activities, I&T facilities, documentation
 > \$, time
- Major players likely have planetary protection officers/facilities in place to help maintain requirements.
- Likely a bigger concern for non-NASA affiliated entities (e.g. Universities and other space
 companies) due to lack of expertise, proper test/integration facilities, and likely funded via lower cost programs.

7

High Priority Targets CLASSIFICATION: CAT II

SBAG mission priorities (Goals & Questionnaire)

8

Diverse objects; especially those not represented in the meteorite collection

New Frontiers:

Discovery:

- Comet surface sample return (in Goals Document and first priority on SBAG questionnaire)
- KBO tour (in Goals Document)
- Ceres Lander (not in Goals Document, but prioritized since the document was published).
- Main Belt Tour (mentioned in SBAG questionnaire)
- Trojan tour (in Goals Document but not as compelling because of Lucy)

Flagship:

- Cryogenic comet sample return (#1 in the SBAG questionnaire and mentioned in Goals Document)
- Pluto orbiter plus KBO tour (not mentioned in Goals Document)
- SBAG strongly supports the investigation of small bodies (Mars moons, outer irregular moons of the gas and ice giants; Centaur flyby enroute) as an integral part of a Flagship mission

https://www.lpi.usra.edu/sbag/goals/ https://www.lpi.usra.edu/decadal/sbag/

EXAMPLES OF OUTSTANDING TARGETS

- Few or unique in nature
- Missions to carbonaceous asteroids are currently Cat II
- Missions to Pluto, Charon, Triton currently Cat II*
- Ceres covered under "non-Cat I" asteroids; future; to be reconsidered for future lander/sample return missions

Recent geological activity, organics, candidate OW

CERES

(2) PALLAS Second largest C-type asteroid Potential parent body of CM chondrites

ICY ASTEROIDS Different sizes → different evolution Organics present

(10) Hygiea

(2) Pallas

INTERSTELLAR OBJECTS

1I/'Oumuamua

Small sample/statistics Organics MAY be present

PLUTO (and Charon) Recent geological activity, organics, candidate OW OTHER DWARF PLANETS, TRITON

(24) Themis

Recommended Classification for Other Small Bodies CLASSIFICATION: CATIVS II

Identifiable Population:

11

refers to a subset of solar system small bodies defined by ranges of measurable known parameters, such as (a) orbital elements, (b) spectroscopic classification, (c) activity, (d) composition, and/or (e) size. Objects yet to be discovered, whose properties fall into the defining ranges, are to be considered members of the corresponding identifiable population.

Recommended Science Scope Classification:

	Liquid interior	Spec. Class. (e.g. Organics)	Ocean World tracer (e.g. plumes)	Atmosphere	Uniqueness
Catl					
Catll		Υ		Υ	Υ
CatIII	Y		Y		

Cat II and I applies to flyby, orbiter, lander. Cat III applies to orbiters/flybys only.

Avoiding prioritization or generalization with population of small bodies and consider the science priority that would drive the category.

Other Considerations:

Revisiting from flyb

Special c previous, scientific integrity contamin

> Habital
> Size – c encour
> Activity

* Hierarchal

Exemptions for Planetary Defense

Image credit: Continental Dynamics Workshop/NSF

PHAs or NEAs identified as a potential threat, should no longer be considered for classification and dealt with in a manner appropriate from a planetary defense perspective.

13

- Known objects that are not considered a likely threat should follow previous recommendations and likely fall in Cat I.
- Future characterization and mitigation demonstration missions for planetary defense may go to a variety of objects (i.e., organic-rich asteroids, active asteroids, possibly comets, etc.) and may fall in Cat II.

Sample Preservation

- Consider maintaining some predetermined percentage of population for a given type/class of object pristine for future studies (e.g. 50% set for NASA curation).
- A limited number of objects in categories with unique characteristics can be studied in detail and full consideration given to classification. Need community input.

Final Thoughts

- ► Hierarchalsystem to consider:
 - Planetary Defense NONE
 - ► Key objects of interest (unique, mission specific) Cat II or III
 - Populations (hydrocarbon lakes, organics, evidence of ocean worlds, etc.) Cat II or III
 - Future missions (re-visiting) Cat II
 - Sample Statistics (number of objects identified/characterized) Cat I
- Cat III is only for orbiter/flyby and does not cover interest in landing on some of the candidates Ocean Worlds (Ceres and Triton in particular). The current PP framework is not adequate for such missions.
- Further study needed with broader community input.