Asteroid Minerology

Dan Britt University of Central Florida Center for Lunar and Asteroid Surface Science (CLASS) dbritt@ucf.edu

How do we know the mineralogy of asteroids?

A MARTINE ALT

- Samples of asteroids fall from the sky.....
- There are 74,333 named meteorites

But they are in a seemly bewildering array of meteorite groups

And don't forget the "ungrouped" meteorites

But they are in a seemly bewildering array of meteorite groups

But asteroid mineralogy is actually pretty simple

- There are about 4600 terrestrial mineral species.
- Asteroids get by with only about 250 minerals.
- Why?
 - Minerals "evolve" in response to changing chemical, physical, and even biological processes over time.
 - The complex terrestrial mineralogy is the result of 4.4 billion years of heat, pressure, crustal recycling, changing chemistry, and interaction with life.
- The processes that drive mineral evolution on Earth are either <u>very</u> <u>limited</u> or <u>entirely absent</u> on asteroids....hence a relatively simple mineralogy.

NASA/Goddard/University of Arizona

Stages of Mineral Evolution

Er	a/Stage	Age (Ga)	Cumulative no. of species								
Pr	enebular "Ur-Minerals"	>4.6	12								
Era of Planetary Accretion (>4.55 Ga)											
1.	Primary chondrite minerals	>4.56 Ga	60								
2.	Achondrite and planetes- imal alteration	>4.56 to 4.55 Ga	250								
Era of Crust and Mantle Reworking (4.55 to 2.5 Ga)											
3.	Igneous rock evolution	4.55 to 4.0 Ga	350 to 500*								
4.	Granite and pegmatite formation	4.0 to 3.5 Ga	1000								
5.	Plate tectonics	>3.0 Ga	1500								
Er	a of Biologically Mediated	l Mineralogy (>2.5 Ga	to Present)								
6.	Anoxic biological world	3.9 to 2.5 Ga	1500								
7.	Great Oxidation Event	2.5 to 1.9 Ga	>4000								
8.	Intermediate ocean	1.9 to 1.0 Ga	>4000								
9.	Snowball Earth events	1.0 to 0.542 Ga	>4000								
10.	Phanerozoic era of biomineralization	0.542 Ga to present Haze	4400+ n and Ferry, 2010								

Stages of Mineral Evolution

B	Era/Stage	Age (Ga)	Cumulative no. of species										
P	Prenebular "Ur-Minerals"	>4.6	12										
F	Era of Planetary Accretion (>4.55 Ga)												
1	. Primary chondrite minerals	>4.56 Ga	60										
2	 Achondrite and planetes- imal alteration 	>4.56 to 4.55 Ga	²⁵⁰ Ast	eroid Lin									
F	Era of Crust and Mantle Reworking (4.55 to 2.5 Ga)												
3	. Igneous rock evolution	4.55 to 4.0 Ga	350 to 500*	unar Lin									
4	 Granite and pegmatite formation 	4.0 to 3.5 Ga	1000										
5	Plate tectonics	>3.0 Ga	1500										
F	Era of Biologically Mediated	l Mineralogy (>2.5 Ga	to Present)										
6	. Anoxic biological world	3.9 to 2.5 Ga	1500										
7	. Great Oxidation Event	2.5 to 1.9 Ga	>4000										
8	. Intermediate ocean	1.9 to 1.0 Ga	>4000										
9	. Snowball Earth events	1.0 to 0.542 Ga	>4000										
1	0. Phanerozoic era of biomineralization	0.542 Ga to present Haze	4400+ n and Ferry, 2010										

Planetary

Terrestrial

Stage 0: Presolar Grains

- Presolar stardust grains comprise about 0.1 percent of the total mass of meteorites.
- nitrides
 - Osbornite (TiN)
 - Nierite (α -Si₃N₄);
- carbides
 - Cohenite [(Fe,Ni,Co)3C]
 - Moissanite (SiC)
 - Titanium carbide (TiC)
 - Diamond, graphite (C)
- Iron alloys
 - Kamacite (Fe,Ni)
- oxides
 - Rutile (TiO₂)
 - Corundum (Al₂O₃)
 - Cpinel (MgAl₂O₄)
 - Hibonite (CaAl₁₂O₁₉)
- Silicates
 - Forsterite (Mg₂SiO₄)
 - Perovskite-structured MgSiO₃

 We have identified about a dozen, but there are probably a few more minerals to be found.

Stage 1: Accretion and the Formation of Chondritic Minerals

- Minerals condense out of the cooling solar nebula, with high-temperature minerals condensing first.
 - These include ~24 high-temperature mineral phases
 - The cooling nebula then condenses progressively lower-temperature minerals.
- Chondrules dominate this stage.
 - Millimeter sized spheres formed in the solar nebula.
 - Chondrules are the sedimentary "sand" of the solar system....which make up the chondrite meteorites.
- Chondrites contain a diversity of metals, sulfides, oxides, and phosphates.
- How do we know? ~75,000 recovered meteorites.

CAI

Stage 1: Primary Chondritic Minerals

- The mineral assemblage at this stage is ~60 minerals
- Formed under chemically diverse environments, particularly oxygen fugacity which ranges from highly reduced enstatite chondrites to the oxidized carbonaceous chondrites.
- Dominant minerals include:
 - Olivine
 - Pyroxene
 - Plagioclase
 - FeNi
 - Troilite
- Melting, metamorphism, aqueous alteration, and shock will alter, modify, and diversify the chondrites.

Timing and Location are Critical

- <u>Asteroids got one major</u> <u>heating cycle and were done</u> <u>~4.5 billion years ago</u>.
- Planetesimals that accrete early (with lots of ²⁶Al) heat to melting and differentiate, producing <u>igneous melts</u>.
- With the short half-life of ²⁶Al it does not take much time before the isotope is depleted and the heating will only <u>metamorphize</u> the planetesimal.

- Planetesimals that accrete outside the "<u>frost line</u>" will include frozen volatiles and organics as well as minerals. Later heating of this assemblage produces <u>aqueous alteration</u>.
- Planetesimals that accrete outside the frost line <u>and</u> after several ²⁶Al halflifes do not heat much, if at all. This produces comets, some Trojans, some of the Kuiper Belt that retain mixtures of unaltered refractory minerals, organics, and ices.

Stage 2: Igneous Alteration

- In some planetesimals heated above ~950°C crossing the liquidus for early partial melts from FeNi metal and troilite.
- The early melts migrated through the unmelted silicates and form meteorites like acapulcoites, winonaites, and IAB irons.
- As the temperatures increased, silicate melting formed pyroxene-plagioclase-rich melts.
 - Residual rocks remaining after silicate melting are represented by meteorite groups like the ureilites and lodranites.
- The partial melts sequestered a range of incompatible elements, including phosphorus, sulfur, and carbon which reacted with unmelted silicates to form new minerals.
 - Phosphates: Na–Ca–Mg phosphates chladniite, panethite, brianite, and johnsomervilleite
 - Carbides: cohenite and haxonite (Fe,Ni)₂₃C₆.

Stage 2: Igneous Alteration

- At high degrees of melting differentiation sequestered siderophile from lithophile elements that crystallized separately to form the crust, mantle, and core of the planetesimal.
- Within the crust more incompatible elements were concentrated.
 - Feldspar (KAlSi $_3O_8$), titanite (CaTiSiO $_5$), zircon (ZrSiO $_4$), and baddeleyite (ZrO $_2$) formed.
- In the core, mineralogical diversity was controlled both by fractional crystallization and solid-state transformations during cooling.

V·T·E	V-T-E Goldschmidt classification in the periodic table																	
Group →	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓ Period																		
1	1 H			Elements 2												2 He		
2	3 Li	4 Be	concentrated in										5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg	asteroid cores 13 14 15 16 17 At Si P S CI											18 Ar				
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mit	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 St	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 D0	85 At	86 Rn
7	87 Fr	88 Ra	**	(104) Rf	(105) Db	(106) Sg	(107) Bh	(108) Hs	(109) Mt	(110) Ds	(111) Rg	(112) Cn	(113) Uut	(114) Fl	(115) Uup	(116) Lv	(117) Uus	(118) Uuo
* Lanthanides		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Тb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
** Actinides		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	(95) Am	(96) Cm	(97) Bk	(98) Cf	(99) Es	(100) Fm	(101) Md	(102) No	(103) Lr		
Legend																		

Legend

Lithophile Siderophile Chalcophile Atmophile very rare

- Lithophile (rock loving) elements remain on or close to the surface because they combine • readily with oxygen, forming compounds that do not sink into the core.
- <u>Siderophile</u> (iron loving) elements are the high-density transition metals which tend to sink • into the core because they dissolve readily in iron.
- <u>Chalcophile</u> (ore loving) elements that combine readily with sulfur and/or some other • chalcogen other than oxygen.
- Atmophile (atmosphere loving) elements are either gases or form volatile hydrides.

Stage 2: Metamorphism

- Heating of anhydrous ordinary and enstatite chondrites produced new minerals from thermal metamorphism at temperatures up to ~950°C
- Phosphates
 - Apatite Ca₅(PO₄)₃(F,CI,OH)
 - Merrillite Ca₉NaMg(PO₄)₇
- Silicates
 - Nepheline (Na,K)AlSiO₄
- Oxides
 - Rutile TiO₂
 - Quartz SiO₂ and its high-temperature polymorphs Cristobalite and Tridymite

Stage 2: Aqueous Alteration

- Late accretion outside the frost line with depleted radioactive elements resulted in only the melting of ice/volatiles and the subsequent alteration of chondrule silicates and organics at low temperatures (<100°C) producing a range of new minerals
 - Phyllosilicates
 - Oxides
 - Sulfides
 - Carbonates
 - Sulfates
- The organics also get "cooked" stripping hydrogen out of the carbon compounds, resulting in abundant lowhydrogen polycyclic aromatic hydrocarbons (PAHs).

Impacts and Mineral Evolution

- For 99% of solar system history the only mineral evolution on asteroids is from impact shock effects.
- Formation of shock minerals.
 - High-pressure minerals in meteorites are often polymorphs of lower pressure common minerals
 - Olivine \rightarrow ringwoodite
 - Chondrite melt \rightarrow majorite garnet
 - Magnesiowüstite
 - Enstatite → akimotoite
 - Plagioclase feldspar → maskelynite
- Impacts will fracture and rubblize the bodies.
- Asteroids in near-Earth space are collisional fragments and probably rubble piles.
- These represent multiple fragments of parent bodies that have been dynamically spread over the inner solar system.

The End of Asteroid Mineral Evolution

- Heat drives mineral evolution.
- But heat from accretion, core formation, and strong radioactive sources was exhausted early in solar system history.
- Metamorphism lasted longest on large asteroids, but ended within 20-30 Myr.
- After this period, the only mineralization action was impact-related (aside from dwarf planets).
- Between original mineralogy, aqueous, metamorphic, impact, and igneous evolution meteorites have about 250 minerals.

What we know.....

- On asteroids there are none of the drivers for terrestrial mineral diversity.
 - NO plate tectonics
 - Low lithostatic pressures.
 - No available fluids after 4.5 billion years.
 - Low to no heat internal heat flow after initial heating.
 - No long-lived hydrothermal systems.

Britt and Cannon, 2021

- What we have is a relatively limited mineral suite that underwent short-lived thermal and aqueous processing.
- Meteorites in our collections are strongly biased, because of dynamics and atmospheric entry stresses, toward strong metamorphic and igneous materials from the inner asteroid belt.
- Organics in meteorites are "cooked" by the same thermal processing.

What we don't know.....

 Dynamically distant (Hildas, Trojans, Kuiper Belt) and weak parent bodies are under-represented or <u>absent</u> in the meteorite collection.

- Late-accreting parent bodies which have not undergone thermal processing will likely have:
 - An even less diverse mineralogy. Probably limited to the ~60 minerals in the accretionary and pre-solar suite.
 - More (probably much more) diverse organic assemblage because of less or no thermal processing.
 - Again, these will be parent bodies in the outer belt and solar system.

To Wrap Up

- Mineral evolution are fundamentally different on Asteroids vs. the Earth.
 - Asteroids have about 250 minerals vs. over 4600 for Earth.
- Geological concentration mechanisms, long-lived heat sources, and multiple mineral-forming events that we see on Earth do not exist on asteroids.
- Impacts, shock, and fragmentation are the major drivers for most of solar system history.
- NEAs and most inner asteroid belt objects are fragments of abundant populations of processed materials with limited mineral assemblages.
- Unique asteroid populations of astrobiological interest are very limited in the inner solar system.

NASA/Goddard/University of Arizona

ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/D ASP/IDA