

Assessing the Exposome Using Wearable Sensors: Challenges and Opportunities

Yuxia Cui, PhD Health Scientist Administrator National Institute of Environmental Health Sciences

The Outstanding Challenge: Environmental Exposure Assessment

<u>Editorial</u>

Complementing the Genome with an "Exposome": The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology

Christopher Paul Wild

Molecular Epidemiology Unit, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom

"This concept of an exposome may be useful in drawing attention to the need for methodologic developments in exposure assessment."

Chris Wild, Cancer Epidemiology, Biomarkers & Prevention, 2005; 14 (8): 1847-50

NIEHS Exposure Science and the Exposome Program

The Human Health Exposure Analysis Resource: 2019 - 2024

Goal

Provide infrastructure for adding or expanding exposure analysis to advance understanding of the impact of environmental exposures on human health throughout the life course

HHEAR Laboratory Network

National Institutes of Health U.S. Department of Health and Human Services

Sensors for Personal Monitoring

MicroPEM RTI International

Silicone Wristbands Oregon State University

AutoSense Sensor Suite, U of Memphis

Personal Ultrafine Particle Counter (PUPF), Enmont

Personal Ozone Monitor (POM), 2B Technologies

POC sensor for Multi-Metal Measurement U of Illinois Chicago

NIEHS Supported Sensor Research

- Hardware
 - Continuous measurements
 - GPS technology
 - Wireless data transmission
- Software
 - Data processing and statistical analysis
 - User interface (computer or smartphone)

- Miniaturize
 - More wearable
- Improve battery life
 - Less user interference
- Laboratory and field testing
 - More accurate and reliable measurement

Example 1: the New York City Biking Study

Steve Chillrud/Darby Jack, Columbia University

- Background
 - Approximately eight hundred thousand (773,000) New Yorkers ride a bike regularly (NYC DOT)
 - How does air pollution affect these cyclists?
- Hypothesis
 - Potential inhaled dose is a better exposure metric to study the impacts of air pollution on HR, BP

Potential inhaled dose = concentration * minute respiration

MicroAeth Black Carbon

MicroPEM PM2.5, accelerometer

Respiratory sensors (minute respiration) Cardiac sensors (HR)

Blood pressure monitors, GPS

Hexoskin Shirt

National Institutes of Health U.S. Department of Health and Human Services

Example 1: the New York City Biking Study

Data collection

- 149 study participants
- Five to six 24-hr sessions
- Exposure
 - PM2.5, Black Carbon, GPS
- Physiological
 - respiration, BP, HR, physical activity

City Cyclists: Here's How Much Pollution You're Actually ...

Air pollution now causes more than 4 million deaths a year. ... New York City has made big strides since the ... Jul 28, 2018 · Uploaded by VICE News

Example 2: Wristbands

Development of a Route of Exposure Model Using Silicone Wristbands as Personal Samplers

The Concept of Microneedle Based Biosensing in Health Care

Fig. 1. Graphical concept. Application of microneedle-based sensors in the healthcare sector.

Juan Jose García-Guzman, et al. Trends in Analytical Chemistry, 135 (2021) 116148

Challenge: Exposure Biomarkers Are Low Abundance

Rappaport SM, et al. Environ. Health Perspect., 122(8):769–74, 2014

Example 3: Microneedle Arrays (MA)

Quantifying Heavy Metals in Interstitial Fluid for Remote Monitoring of Chronic Exposures

Advantages:

- Minimally invasive sampling can increase subject recruitment and number of samples per subject
- Potential for remote monitoring

Example 4: Self-tracking Wearables (smart phone GPS data)

Perry Hystad, Oregon State University

Evaluating and Applying Google Timeline Data for Built Environment and Physical Activity Research

Example 5: Self-tracking Wearables (Fitbit)

Fitbit Data

Any Fitbit Data

https://databrowser.researchallofus.org/fitbit

Summary

- Significant advancement in wearable technologies
 - Environmental minoring
 - Physical activity
 - Physiological monitoring (metabolic, cardiovascular, reparatory, temperature, ...)
- Continuous monitoring of small molecules at low concentrations is problematic
 - Alternatives (decentralized, non-invasive sampling + centralized analysis)
- Data challenges
- Privacy concerns

Wearable Technology is a Rapidly Growing Field

PubMed Search on Wearable Sensor

Acknowledgement

NIEHS Exposure Biology and the Exposome Program

David Balshaw, Ph.D.

Jennifer Collins

Yuxia Cui, Ph.D.

Daniel Shaughnessy, Ph.D.