NATIONAL ACADEMIES Sciences Engineering Medicine

Carbon Dioxide Utilization Markets and Infrastructure: Status and Opportunities A First Report

Committee Chair: Emily Carter (NAS/NAE), Princeton University Study Director: Elizabeth (Beth) Zeitler Study Co-Director: Catherine Wise

CONSENSUS REPORT BRIEFING

What is carbon dioxide utilization? How could it fit into a net-zero emissions future?

Targeting a Net-Zero CO₂ Emissions System

3

What is Carbon Dioxide (CO₂) Utilization?

 Chemical transformation of CO₂ from the atmosphere, water, or waste gas streams into a marketable product

• In this report, CO₂ utilization does **not** include:

ΝΛΤΙΟΝΛΙ

ACADEMI

- uses of CO₂ that do not involve a chemical transformation
 (e.g., enhanced oil recovery, fire suppression, beverage carbonation)
- chemical transformations of CO₂ resulting in non-traded products and goods (e.g., soil carbon, ocean mineralization)

CO₂ Utilization in a Net-Zero Emissions System

Enables sustainable production of carbon-based products that are currently derived from fossil resources

Today

Net-zero future

CO₂ Utilization in a Net-Zero Emissions System

Climate and emissions impacts of CO_2 utilization processes depend on product lifetime, CO_2 source, and emissions associated with other inputs

- Long-lived products provide durable carbon storage
- Short-lived products participate in circular carbon economy

About the Study

About the Study

Origin: Congressional mandate in the Energy Act of 2020; follow up to 2019 National Academies study *Gaseous Carbon Waste Streams Utilization: Status and Research Needs*

Sponsors: DOE's Offices of Fossil Energy and Carbon Management, Energy Efficiency and Renewable Energy, and Science

Report : Consensus study with 44 findings and 19 recommendations

This briefing shares the results of the first of two reports from the committee (a second report will be released in 2024).

About the Study – Committee

Emily Carter (NAS/NAE), Princeton University, Princeton Plasma Physics Laboratory, *Chair*

Shota Atsumi, University of California, Davis

Makini Byron, Linde

Alayna Chuney, Carbon 1801

Stephen Comello, Stanford Graduate School of Business, Energy Futures Initiative

Maohong Fan, University of Wyoming, Georgia Institute of Technology

Matthew Fry, Great Plains Institute

Haroun Mahgerefteh, University College London

- Emanuele Massetti, Georgia Institute of Technology
- Ah-Hyung (Alissa) Park, Columbia University

Joseph Powell (NAE), ChemePD LLC, Formerly Shell

Andrea Ramírez Ramírez, Delft University of Technology

Volker Sick, University of Michigan

9

About the Study – First Report Task Statement

The committee will provide a first report which:

- 1) assesses the state of infrastructure for carbon dioxide transportation, use, and storage as of the date of the study; including pipelines, freight transportation, electric transmission, and commercial manufacturing facilities.
- 2) identifies priority opportunities for development, improvement and expansion of infrastructure to enable future carbon utilization opportunities and market penetration. Such priority opportunities will consider how needs for carbon utilization infrastructure will interact with and capitalize on infrastructure developed for carbon capture and sequestration.

What is the status of infrastructure for CO₂ utilization?

Existing Processes and Facilities Utilizing CO_2

Products currently produced from CO₂ on a commercial scale

- Oxygenated chemical products
- CO₂ cured ready-mix concrete
- Ethanol from biological CO₂ utilization

Pilot-scale CO₂ utilization efforts

- Mineralized CO₂ products from waste materials
- Some commodity chemicals and plastics
- Some biological CO₂ utilization processes

Barriers to Commercialization (from Finding 2.1)

- (1) Higher cost than incumbent fossil-fuelderived products
- (2) Limited incentives to produce certifiable net-zero-emissions products
- (3) Limited availability of net-zero emissions inputs, such as clean electricity, hydrogen, and heat

Existing CO₂ Transport and Storage Infrastructure

Existing CO_2 pipelines (gray lines) and potential CO_2 storage sites (green, yellow, and red shading).

Figure adapted from Abramson et al. (2020).

- ~5000 miles of CO₂ pipelines in the U.S., mostly for enhanced oil recovery
- CO₂ transport also occurs by truck and rail and, less often, by ship and barge
- U.S. has significant capacity to store CO₂ underground in various geologic formations

Leveraging Existing Infrastructure? (from Finding 2.3)

Existing CO_2 pipeline transport infrastructure not well-aligned with sustainable CO_2 utilization opportunities in a net-zero future

What commercial products can be made from CO₂?

Major Potential CO₂ Utilization Opportunities

Product Class	Chemical or Material	Product Lifetime
Construction Materials	Concrete Aggregates	Long-lived
Chemicals and Fuels	C1 Compounds Methanol Formic Acid Formaldehyde Methane Carbon Monoxide	Short-lived
	 C2 Compounds Ethanol and Ethylene Dimethyl Ether Oxalate and Oxalic Acid C2+ Compounds C2+ Carboxylic Acids and Carboxylates Hydrocarbon Fuels Protein Pigments 	
Polymers and polymer precursors		Some short-lived, some long-lived
Elemental Carbon and Engineered Products	0-3D products	Some short-lived, some long-lived
Niche Products	Diamonds, vodka, etc.	Some short-lived, some long-lived

Market Potential for CO₂ Utilization **From Finding 3.10**

- Global utilization potential for CO₂ to make products: up to several gigatonnes per year, or about 5% of current global emissions
- Volume of CO₂ utilized in a net-zero economy driven by market value of carbon-based products and the competitiveness of CO₂ as a feedstock, as well as:
 - demand for services provided by carbon-based products
 - relative cost compared to fossil-based products and other alternatives
 - availability of required inputs like clean hydrogen and clean electricity
 - policy incentives and regulatory frameworks

What factors need to be considered when developing infrastructure for CO₂ utilization?

Overview of Infrastructure Needs for Utilization

CO₂ Sources

Fossil Source CO₂

Biogenic CO₂

Direct Air or Ocean Capture CO₂

- Currently 12 commercial carbon capture facilities in the United States
- As of June 2022, 60 carbon capture projects under development

CO₂ Capture Costs (from Finding 4.1)

- Capture cost a deterrent to more widespread implementation of CO₂ utilization
- Cost of CO₂ capture depends on:
 - \circ concentration of CO₂ in the source
 - \circ type of CO₂ capture technology

CO₂ Purification for Transport and Utilization

Different CO₂ utilization pathways have different purity requirements

	CO ₂ utilization route	Required purity
	Mineralization	Low
asing needs	Biological conversion (anaerobic)	Low to medium
	Thermochemical conversion	High to very high
5	Electrochemical conversion	Very high

CO₂ Purification Requirements (from Findings 4.2 & 4.3)

- Capture, transport, utilization, and storage all have different CO₂ impurity tolerances
- Technologies for purifying CO₂ waste streams are commercially available but costly

incre

purity

CO₂ Transport Safety

Properties of CO₂

- colorless, odorless gas
- heavier than air
- asphyxiant
- non-toxic
- non-flammable

Risks associated with CO₂ transport

- Asphyxiation from CO₂ displacing oxygen in air
- Physical damage from rapid expansion of CO₂ from supercritical to gas phase upon pipeline rupture

Safety Considerations (from Finding 4.7)

- Difficult to draw meaningful conclusions on CO₂ pipeline failure statistics:
 - \circ relatively small number of existing CO₂ pipelines
 - location of existing pipelines in remote areas
- No major safety issues envisaged with appropriate mitigation steps in place

Clean Electricity Infrastructure

Electricity for CO₂ Utilization (from Finding 4.11)

- Higher demand for zero-emissions
 electricity
- Most CO₂ utilization processes require 24/7 operation
- Impacts optimal power generation mix, load management, transmission and distribution planning

Recommendation 4.4. National policy should prioritize carbon-emissions-free energy as inputs to all aspects of a netzero-carbon-emissions system, including growth in emissions-free energy to accommodate CO₂ utilization. In the near term, the U.S. Department of Energy should coordinate efforts to advance CO₂ utilization with carbon-emissions-free energy projects. especially those with intermittent characteristics, such as solar and wind energy systems that offer opportunities to capitalize on production capacity that would otherwise be curtailed.

Clean Hydrogen Infrastructure

Hydrogen for CO₂ Utilization (from Finding 4.12)

- Many CO₂ utilization processes require hydrogen as an input
- Hydrogen difficult to transport and store
- On-site, on-demand production of hydrogen favored where feasible

Recommendation 4.5. Given the complexity of transporting and storing the hydrogen required for upgrading CO₂ to hydrocarbon products, project planners should **consider co-location of** hydrogen generation with manufacturing plants utilizing CO₂ as a feedstock. Given that most utilization projects will require 24/7 plant operation to be economically viable, project planners should also incorporate energy storage into the facility design.

Opportunities for Co-Location to Minimize Transport

Examples Include

Building material product manufacturing sited near existing point sources and product uses

Direct air capture facility sited near existing chemical manufacturing plant and energy/hydrogen/water inputs

Strategic Co-Location (from Finding 6.4)

Consider features of CO₂ source and utilization product(s) when developing infrastructure:

- To maximize climate benefits (e.g., emissions reductions)
- To minimize costly transportation requirements

What policies and regulations would facilitate future CO₂ utilization projects?

Policy Considerations to Support CO₂ Utilization

Cost-Effective Economic Tools (from Finding 5.1)

Most cost-effective ways to promote adoption of CO₂ utilization technologies:

• Disincentivize emissions (via, e.g., carbon tax or emissions trading scheme)

AND

• Incentivize research and development in CO₂ utilization technologies

- Unlimited subsidies can create perverse incentives
 - o to continue operating inefficient technologies
 - $\circ~$ to create emissions that would not otherwise exist
- Policy uncertainty over the long term can hinder investments and technology adoption

Regulatory and Permitting Considerations

Regulatory Considerations and Permitting Landscape (from Findings 5.4 & 5.5)

- Complex regulatory frameworks are necessary to define markets, protect public safety, and achieve societal goals such as environmental justice
- As a result, there are many permits and approvals necessary for CO₂ utilization projects, which have to be processed through multiple federal, state, and local agencies
- This can slow down the diffusion of CO₂ utilization technologies needed to support a net-zero future

Recommendation 5.2. All states should craft regulation that is efficient and clearly communicated to achieve public policy goals while providing a usable framework for participation in CO_2 utilization markets without unnecessarily penalizing the deployment of CO_2 utilization projects across the value chain.

What are strategies to ensure community engagement and equitable development?

Societal Acceptance and Environmental Justice

Cost-benefit Analysis (CBA) (from Finding 5.8)

- CBA can provide appropriate framework for:
 - choosing how to invest public resources to maximize total societal benefits
 - estimating distributional impacts
- CBA *cannot* be used to judge fairness of an action
- Regulators may choose not to invest in projects that would generate a net societal benefit but have unavoidable and unacceptable equity implications

Community Engagement (from Finding 5.9)

- Disadvantaged communities have not had substantive agency in affecting development of infrastructure that often negatively impacts them
- Early and ongoing community engagement can enable just and equitable outcomes for those populations
- Without community support, infrastructure projects are likely to fail, encounter delays, or require expensive reworking

Recommendation 5.6. Regulatory authorities in charge of siting infrastructure should account for distributional impacts of CO_2 utilization projects through a process that considers equity and justice for disadvantaged groups, engages impacted communities early and throughout the project planning and allows for alteration of project design and implementation.

What are near-term opportunities for investment in CO₂ utilization infrastructure?

Near-Term Opportunities for Infrastructure Investment

From Finding 6.1

Recommendation 6.1. The U.S. Department of Energy should support its national laboratories, academia, and industry to leverage their competencies in techno-economic and life cycle analyses, as well as integrated systems analysis, to **identify the best deployment and investment opportunities from the myriad of utilization options**, avoiding those that are technically feasible but not sustainable or economically attractive. These assessments should **consider relevant regulatory and policy frameworks and environmental justice impacts**, as well as factors that may influence societal acceptance of the technologies.

NATIONAL ACADEMIES

CO₂ Utilization in Industrial Clusters

Geologic Sequestration

Attributes of Industrial Clusters (From Finding 6.3)

- Ability to manage large volumes of CO₂ without extensive pipeline networks
- Flexibility to incorporate new CO₂ utilization opportunities over time
- Co-location with enabling infrastructure
- Maintain jobs in regions with large industrial presence

Recommendation 6.4. When evaluating proposals for the hydrogen and direct air capture hubs authorized in the Infrastructure Investment and Jobs Act, the U.S. Department of Energy should consider rewarding through their selection process projects that **co-locate hub types to take advantage of shared infrastructure needs and facilitate CO₂ utilization applications that require hydrogen**.

Conclusions

Carbon Management Hub

NATIONAL ACADEMIES Sciences Engineering Medicine

CO₂ utilization can play an important role in a net-zero future

- Enables continued production of carbonbased chemicals and materials
- Provides durable carbon storage in long-lived products

Near-term infrastructure planning and design considerations:

- Co-location of utilization with clean electricity, clean hydrogen, other carbon management infrastructure
- Ability to connect CO₂ transport with future utilization opportunities

NATIONAL ACADEMIES Sciences Engineering Medicine

Thank you!

Questions?

Download the report here: <u>http://nap.edu/26703</u>

NATIONAL ACADEMIES Sciences Engineering Medicine

Carbon Dioxide Utilization Markets and Infrastructure

Status and Opportunities A First Report

