

Quantifying SOC for Carbon & Ecosystem Services Markets: *Market Experiences & Challenges*

National Academy of Sciences – Board on Agriculture and Natural
Resources Public Meeting
December 6, 2021

Debbie Reed, ESMC/ESMRC

Quantifying SOC for Market Applications

Scope of Need

- No standards, scientific agreement for quantifying SOC
- Markets require certainty of quantification: expensive
- Guidance, criteria, 'standards' needed to assure credibility
 - inform standards bodies
 - Assist market programs, buyers, investors
 - Assure civil society, consumers, investors
- More, granular, high quality SOC data needed now to ground-truth promising new technologies: RS, AI, etc.

Scale of Need

- Exponential global market growth occurring now
- Natural Climate Solutions and C removals in highest demand
- Carbon removals necessary to achieve global net zero (1.5C) by 2050
- Corporate actors, particularly in food & beverage sector & ag supply chain, investing millions in SOC removals
- w/o credible claims, investments in carbon removals at risk

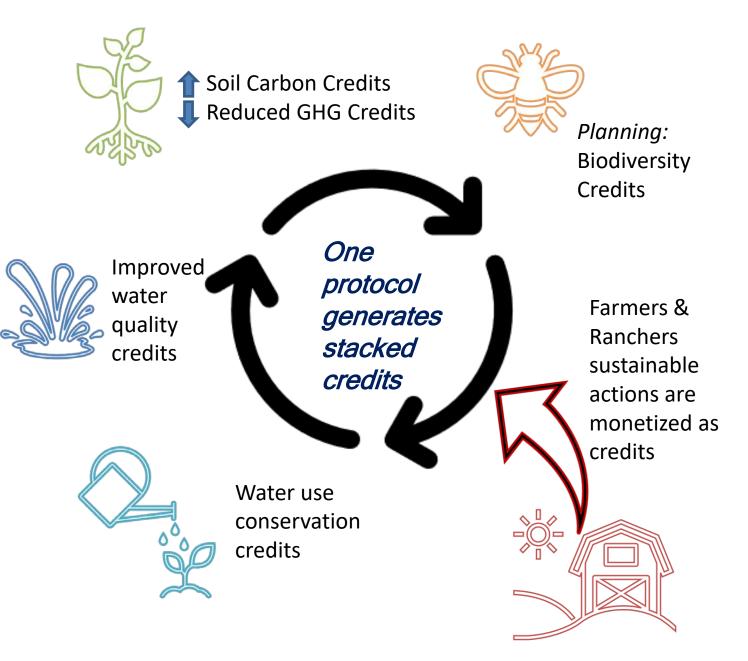
Carbon Credit Instruments in Carbon Markets

Carbon Inset Credits: Guidance in Development

- New market instrument
- Absolute credits no emissions allowed elsewhere
- Remain in ag supply/value chain
- Require soil sampling @ baseline
 & every 5 years, & modeling
- Monitoring in perpetuity?
 - When monitoring ends, all claims/credits reversed

Carbon Offset Credits: Rules in Effect

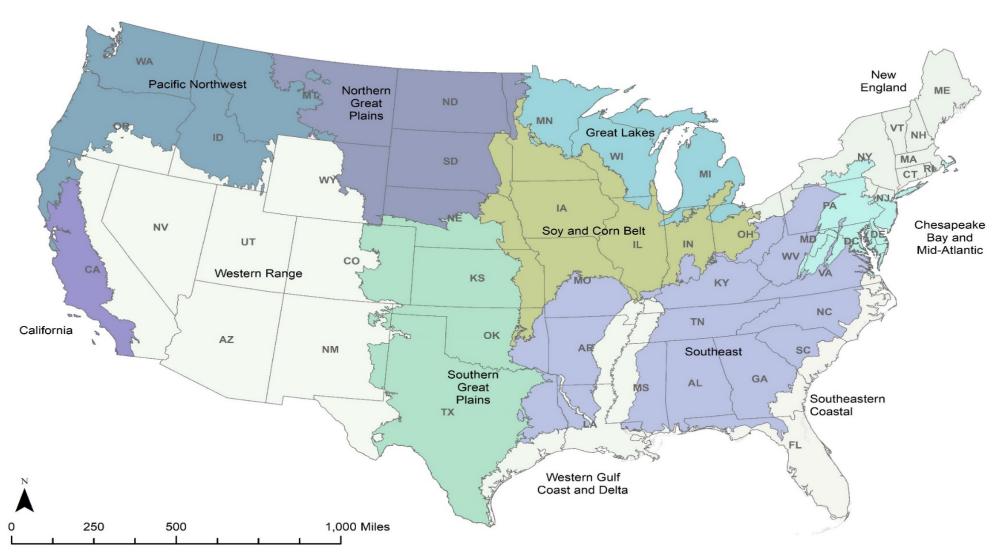
- ~25 years ago as temporary market mechanism
- Credits allow equivalent emissions elsewhere
- Can cross sectoral boundaries
- Require soil sampling @ baseline, sometimes resampling
- Variable monitoring requirements: 20-100 years



ESMC Market Program

ESMC modular, tiered protocols

- Modular: generate & stack multiple credits
- Tiered: multiple market opportunities
- ESMC quantifies, verifies, certifies*, stacks, sells credits
- ESMC pays farmers


^{*}Gold Standard & SustainCERT are global certification bodies we are using for certification and verification

ESMC Program Coverage Currently

All Major Ag Production Systems

MISSOURI

IL Corn

PIVOT BIO

Founding Circle Members

of Wheat Growers

PEPSICO

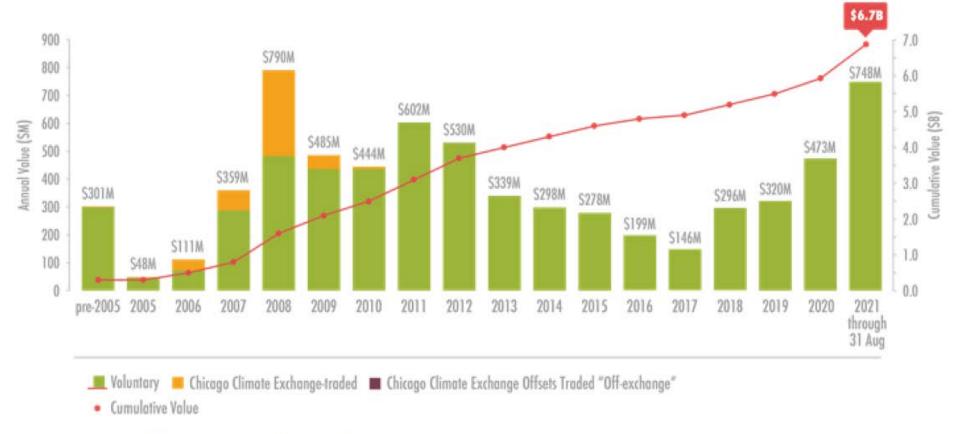
OpenTEAM

VENCE

ARVA

Iyson

National Cattlemen's Beef Association



Voluntary Carbon Markets 2021

Figure 1. Market Size by Traded Value of Voluntary Carbon Offsets, pre-2005 to 31 August 2021

Voluntary Carbon Markets 2021

Table 1: Annual Voluntary Carbon Market Overview, 2019 to 31 August 2021

2021 (through August) 2020

2019

Volume (MtCO2e)	Price per ton (USD)	Value (USD)
239.3	\$3.13	\$748M
188.2	\$2.51	\$473M
104.3	\$3.07	\$320M

C Removals Gaining Preference v Reductions

Table 6: Volume and Prices of Removals and Reductions Credits, 2020 and 2021 (through August)

	2020		2021 (through August)	
	Volume (MtCO2e)	Price (USD)	Volume (MtCO2e)	Price (USD)
Removals	9.0	\$7.93	5.6	\$7.98
Reductions	84.4	\$1.60	52.9	\$1.71

Scale of Need: Who is Buying Credits?

Figure 6: Volumes and Prices by Buyer Sector, 2021 through August

Why Sudden Growth in C Markets?

And interest in agriculture credits?

- Increased and new demand for carbon credits from both countries & private sector corporations
 - 2015 Paris Accord: Global Net Zero Commitments
 - Estimated \$100B in demand for carbon offset credits by 2030*
 - Food and beverage corporations GHG inventories of 90% or more from agricultural supply chains: has created significant focus on agricultural GHG emissions, and emissions reductions, and market opportunities for agriculture

*

TASKFORCE ON SCALING
VOLUNTARY CARBON
MARKETS

Agriculture Credits in C Markets

- Forest Trends 2021 State Voluntary C Markets report:
 - Agriculture credits previously counted under Forestry and Land use category due to small volumes
 - Ag credit volumes increased 876% from 2020 to 2021
 - now being analyzed as standalone project category
 - Ag credits in high demand from buyers/investors
 - highly charismatic character and impacts of nature-based solutions
 - food & beverage sector focus on reduced supply chain impacts from agricultural production

Quantifying SOC for Market Applications:

What is the Scope of Need?

- Cost-effective, scalable, accurate quantification of SOC & changes in SOC stocks, at granular scales, are required to support the sale of SOC credits in markets
- C credits are intangible, but to be fungible in global markets, must be real, additional, verifiable and permanent
- C Market quantification not same as GHG inventory quantification:
 - more granular, project level accounting (v gross, national scale)
 - Discrete, distinct increases in SOC at specific sites, & only attributable to specific new activities
- Some market instruments ("carbon insets") also require increased
 SOC to be allocated by crop, reported annually
- Pending accounting & accounting rules for these instruments also considering permanent monitoring - or - reversal of all claims when monitoring ends

Quantifying SOC for Market Applications

- No scientific agreement or standards on how to quantify SOC or changes in SOC
 - How to stratify sampling
 - How to pull samples
 - How to analyze samples in lab
 - How many samples to take, over what areas
 - What to measure? Bulk density issue
 - How to monitor over time?
- Guidance or criteria with 'grades' for methodologies such as 'good', 'better', and 'best' would be of benefit

Market Requirements & SOC removals

- Only 'new/additional' product
- Quantify and separate out BAU
- For SOC:
 - quantify changes in SOC attributable new practices only
 - Calculate baselines: BAU
 - Calculate SOC increase from new practices
 - Conservatively report delta

- Carbon offsets:
 - area carbon stock changes
 - Can report @ multi-year scales
- New instruments (supply chain emissions units, aka 'carbon insets'):
 - Unit-based quantification
 - Attribute SOC changes by commodity
 - Account & report annually
 - Complex!

Market Requirements & SOC Removals

- Permanence
 - Misnomer in biological systems
 - Duration more accurate than permanence
- Goal:
 - maximize SOC stocks
 - prevent & reverse losses to SOC stocks
 - Maintain duration of SOC stocks as long as possible

- Requires monitoring
 - C offsets:
 - Monitor 20-100 years
 - Supply chain emissions units, ala C insets:
 - Pending guidance for supply chain/insets indicates monitoring required in perpetuity for 'credits' to be claimed
 - reversal of all claims if monitoring ceases

ESMC/ESMRC Approaches

- Credibility of SOC removal credits of concern: high scrutiny
- Need to know what moves the needle with SOC, and how much, where, & need to track and monitor over time
- Start with measurement (direct sampling) to:
 - assure accuracy
 - Ground-truth new technologies
 - align with and inform developing standards for market-based accounting and reporting
- Need scalable, credible cost-effective, low-touch solutions for markets!

ESMC/ESMRC Experience

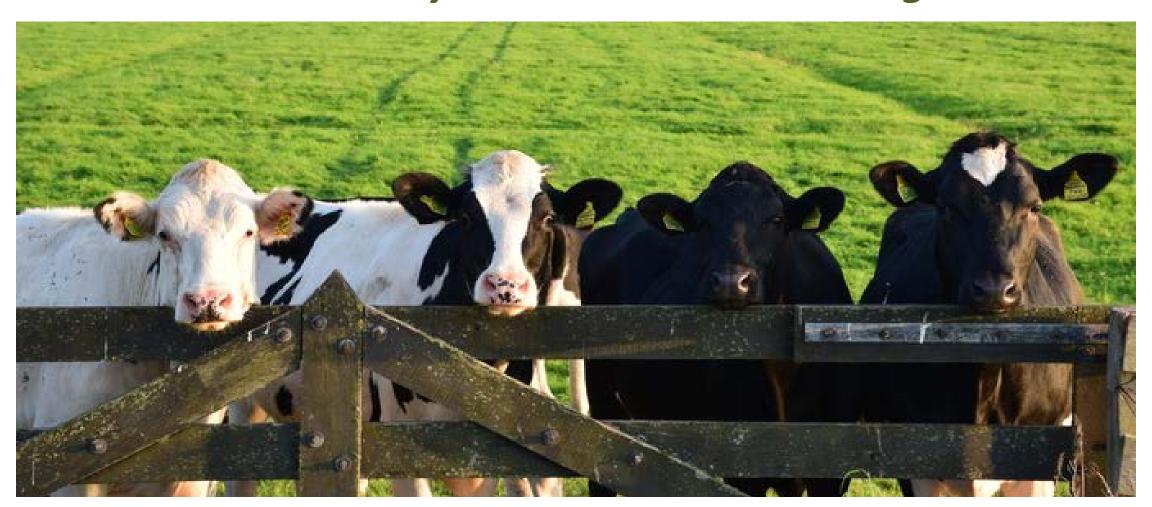
- Remote sensed SOC prediction tools promising, but accuracy depends on:
 - Characteristics of instrument used to gather data
 - Algorithms used for prediction
 - Quality & breadth of measurements used to gound-truth measurements
- Most tools immature, have variable transparency into above factors, and often limited set of ground-truth measurements to calibrate & validate tool
- Tools must thus be vetted & assessed with caution
- Need: automated evaluation approaches that minimize costs, reduce bias when comparing prediction accuracy of various technologies

Scope of Need: ESMC/ESMRC Experience

- Need accurate quantification data to:
 - quantify baseline at appropriate level granularity
 - Quantify changes over time with 'enough' uncertainty
- Gold Standard requires <20% uncertainty for quantifying SOC removals for C offset credits, <30% uncertainty for supply chain emissions units/'C inset' credits
- Underlying standards considering requiring uncertainty levels be reported
 - uncertainty thresholds may be established in future

Conclusions

- Carbon market growth exponential
- High demand for SOC removal credits from agriculture
- SOC removals necessary to achieve global net zero 1.5C
- Standardized SOC quantification approaches essential, urgently needed for high quality/credible SOC removal credits
- Scientific agreement on SOC quantification approaches can support:
 - Appropriate, pragmatic market rules & requirements
 - continued buyer investments in SOC removals
 - Accepted credibility of removals



Conclusions

- If rules & standards for SOC quantification remain too onerous, too expensive & if uncertainty of 'what is good enough' continues, will likely mean:
 - Continued challenges to credibility of SOC removal credits
 - Buyer' demand for SOC removal credits may be hampered
 - Could reduce market mechanism pathways to increase SOC
 - Bad for climate, bad for agriculture:
 - SOC confers resilience and many additional benefits to farms, ranches, natural and working lands
 - Will hamper ability to achieve global net zero, 1.5C by 2050

Thank you www.ecosystemservicesmarket.org

