Special issues for returns to participants in low-resource communities: Lessons from the BioMe project

Noura Abul-Husn, MD, PhD

Vice President of Genomic Health, 23andMe Associate Professor of Medicine, Icahn School of Medicine at Mount Sinai

Disclosures

- 23andMe: Employee and equity holder
- Allelica: Scientific advisory board member
- Akcea: Research funding
- Genetech, Allelica, 23andMe: Personal fees
- Regeneron pharmaceuticals: Previously employed

Biobanks linking genomic and clinical data fuel genomic discovery and

genomic medicine implementation

NS Abul-Husn, EE Kenny. Cell 2019; 177(1):58-69

Biobank participants are not representative of global diversity

NS Abul-Husn, EE Kenny. Cell 2019; 177(1):58-69

Mount The Charles Broofman Sinal Institute for Personalized Medicis

Mount Sinai serves a highly diverse patient population

Genomic screening program

Goal: Identification, confirmation, and return of medically actionable genomic results for use in clinical care

"I believe that return-of-results is a wonderful thing. If they find something wrong, and it's treatable, why wouldn't I want to know about it? I think that this would really help the future. It's not only helping me, but helping future generations." BioMe participant

Woman vector created by freepik-www.freepikov

Implementing genomic screening in diverse populations requires stakeholder input

STAKEHOLDERS

Patients, participants, communities

Geneticist and non-geneticist domain experts

Researchers

Healthcare providers

Healthcare leadership

Payors

Most BioMe participants want to receive genomic results

Do you wish to receive genetic results? (N = 7461)

STAKEHOLDERS

Patients, participants, communities

Geneticist and non-geneticist domain experts

Researchers

Healthcare providers

Healthcare leadership

Payors

Most BioMe participants want to receive genomic results

Do you wish to receive genetic results? (N = 7461)

Spanish-speaking participants are more likely to elect to receive genomic results

Language Preference

 $p = 3.1 \times 10^{-12}$

How should genetic results be returned?

Genomic screening program

ACCESSIBILITY

- English- and Spanish-speaking clinical research coordinators
- Spanish translation of participantfacing materials
- Point-of-care translation services
- Flexible timing of outreach, including evenings and weekends
- In-person or telemedicine option
- RoR visits linked to existing clinical appointments

Which genes should be included?

A Proposed Approach for Implementing Genomics-Based Screening Programs for Healthy Adults

By Michael F. Murray, James P. Evans, Misha Angrist, Kee Chan,Wendy R. Uhlmann, Debra Lochner Doyle, Stephanie M. Fullerton, Theodore G. Ganiats, Jill Hagenkord, Sara Imhof, Sun Hee Rim, Leonard Ortmann, Nazneen Aziz, W. David Dotson, Ellen Matloff, Kristen Young, Kimberly Kaphingst, Angela Bradbury, Joan Scott, Catharine Wang, Ann Zauber, Marissa Levine, Bruce Korf, Debra G. Leonard, Catherine Wicklund, George Isham, and Muin J. Khoury

Box 2 | Suggested Tier System for Genomics-Based Screening Programs

TIER 1

- Lynch syndrome-associated genes (MLH1, MSH2, MSH6, PMS2, EPCAM)
- Hereditary Breast and Ovarian Cancer (HBOC)-associated genes (BRCA1, BRCA2)
- Familial hypercholesterolemia (FH)-associated genes (LDLR, APOB, PCSK9)

TIER 2

- Genes with unknown or low penetrance
- Genes with a less well-established knowledge base
- Efficacious interventions available
- Follow-up confirmatory tests available
- Examples including but not limited to PALB2, hereditary hemochromatosis, malignant hyperthermia, hypertrophic cardiomyopathy, long QT syndrome, pharmacogenomic variants

STAKEHOLDERS

Patients, participants, communities

Geneticist and non-geneticist domain experts

Researchers

Healthcare providers

Healthcare leadership

Payors

https://www.cdc.gov/genomics/implementation/toolkit/tier1.htm

Genomic screening in diverse populations

	Risk Condition	Gene(s)
CDC Tier 1 Genomic Conditions	Hereditary Breast and Ovarian Cancer	BRCA1 BRCA2
	Lynch Syndrome	MLH1 MSH2 MSH6 PMS2
	Familial Hypercholesterolemia	LDLR APOB PCSK9
Tier 2	Hereditary TTR Amyloidosis (hATTR)	TTR

GenomicsFirst Committee

The GenomicsFirst Committee is a team of internal experts in genomic medicine at Mount Sinai. This committee was established to guide efforts in the development and use of genomic screening in clinical care across the Mount Sinai Health System.

STAKEHOLDERS

Patients, participants, communities

Geneticist and non-geneticist domain experts

Researchers

Healthcare providers

Healthcare leadership

Payors

Why hATTR?

Penetrance	The most common <i>TTR</i> variant, V142I, is associated with ~60% increased risk of heart failure
Diagnosis	Only 11% of individuals harboring <i>TTR</i> V142I with heart failure have a diagnosis of hATTR
Actionability	New treatment options delay progression of (but do not reverse) hATTR-related amyloidosis

Why hATTR?

Prevalence	The most common <i>TTR</i> pathogenic variant, TTR V142I, is present in 4% of African American and 1% of Hispanic/Latino individuals
Penetrance	The most common <i>TTR</i> variant, V142I, is associated with ~60% increased risk of heart failure
Diagnosis	Only 11% of individuals harboring <i>TTR</i> V142I with heart failure have a diagnosis of hATTR
Actionability	New treatment options delay progression of (but do not reverse) hATTR-related amyloidosis

ACMG STATEMENT

ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG)

TTR added to ACMG SF v3.1 list in July 2022

Gene/Phenotype	Additional Comments	
Genes related to cardiovascular phenotypes		
BAG3/cardiomyopathy	Similar prevalence/penetrance rates to other DCM genes already on ACMG SF list; also associated with skeletal myopathy	
DES/cardiomyopathy	Similar prevalence/penetrance rates to other DCM genes already on ACMG SF list; also associated with skeletal myopathy	
<i>RBM20</i> /cardiomyopathy	Clear screening guidelines endorsed by ACMG; missense in 5 codons are known P/LF few examples of LoF that are P/LP	
TNNC1/cardiomyopathy	Similar prevalence/penetrance rates to other DCM genes already on ACMG SF list	
Genes related to miscellaneous phenotypes		
TTR/hereditary TTR (transthyretin) amyloidosis	Nonspecific features leading to potential morbidity (heart failure); availability of treatment that may be more efficacious earlier in disease progression; high prevalence in individuals with West African ancestry	

ACMG, American College of Medical Genetics and Genomics; DCM, dilated cardiomyopathy; LoF, loss of functions; LP, likely pathogenic; P, pathogenic.

DT Miller, K Lee, NS Abul-Husn, et al. Genet Med. 2022; 24(7):1407-1414

Consenting to receive results at time of enrollment leads to increased rate of result return

- BioMe protocol was amended in October 2018 to include the option for RoR
- Participants enrolled *prior* to this amendment need to update their consent in order to be eligible for RoR

% RoR among participants with original vs. updated consents

ER Soper in preparation

Consenting to receive results at time of enrollment leads to increased rate of result return

% RoR among **recontacted** participants with original *vs.* updated consents

- Rates of recontact
 - Original consent: 64%
 - Updated consent: 81%

What do we find when we screen for TTR?

32 participants receiving *TTR* V142I result

O PRIOR GENETIC TESTING/DIAGNOSIS

4 HEART FAILURE

CARDIAC AUTONOMIC DYSFUNCTION
INCONTINENCE
SEXUAL DYSFUNCTION/IMPOTENCE

10 CARPAL TUNNEL SYNDROME 10 SPINAL STENOSIS

Over half had hATTR-related systemic features at time of result disclosure

ER Soper et al. J Pers Med 2021; 11(1):49

What do people do after receiving results?

32 participants receiving *TTR* V142I result

Evaluating outcomes from genomic screening for hATTR

- Prior diagnosis
- Prior genetic testing
- Relevant personal and/or family history

- New diagnosis
- Change in management

STAKEHOLDERS

Patients, participants, communities

Geneticist and non-geneticist domain experts

Researchers

Healthcare providers

Healthcare leadership

Payors

NS Abul-Husn *et al. Genome Med* 2021; 13(1):17 ER Soper *et al. J Pers Med* 2021; 11(1):49

Promoting health equity through genomics

- 1. Increase diversity in genomics research to generate knowledge that benefits all populations
- 2. Design and implement pilot genomic screening programs tailored to diverse populations
- 3. Collect and analyze outcomes data from genomic screening programs to inform further research

Perspective Published: 28 October 2020 Strategic vision for improving human health at The					
Forefront of Genomics	ED Green et al. Nature 2020				
	Individuals from ancestrally diverse backgrounds will benefit equitably from advances in human genomics.				

Acknowledgements

Eimear Kenny, PhD

Gillian Belbin, PhD Amy Kontorovich, MD, PhD Emily Soper, MS, CGC Sabrina Suckiel, MS, CGC Natasha Zeid, MS, CGC

Giovanna Braganza, MPH Amanda Merkelson Jessica Rodriguez

GENOMICSFIRST COMMITTEE Manisha Balwani, MD George Diaz, MD, PhD Amy Kontorovich, MD, PhD Aimee Lucas, MD, MS Randi Zinberg, MS, CGC

THANK YOU

to the millions of biobank research participants who make this work possible

National Human Genome Research Institute

National Heart, Lung, and Blood Institute

Thank You

noura.abul-husn@mssm.edu

