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Statistical Agencies Moving into 21st Century
• End-state objective: Re-engineer key economic indicators such as real output 

and inflation to release consistent, timely, and granular statistics
• Census, BLS, and BEA exploring integrated data collection from naturally 

occurring data  
• Quality-adjusted measures of real output and inflation for all goods
• Reduced survey burden on firms
• Data harvested from item-level transactions data that firms and information 

aggregators are already actively using
• The RESET project:  

• Address conceptual, practical, and contractual issues for implementation at scale
• Blueprints for new architecture for collecting data and creating  official statistics.
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Transactions data used to date
• NPD (general merchandise stores, including online)  

• Monthly prices and quantities at store-item level 
• High-quality attributes at item level from value-added by NPD 
• Started with 5 product groups.  Now have scaled to 500 groups covering Apparel and Consumer Electronics
• Collaborative Project with Census (building on project using NPD data to improve Retail Statistics) 
• Working behind Census firewall with Census DRB approving output

• Nielsen (Kilts Center: grocery, discount, convenience, drug and liquor store items for food and 
nonfood)

• Weekly prices and quantities at store-item level
• Using machine learning methods to extract information from limited product attribute data
• Access through University of Maryland and Michigan contracts with Kilts
• Kilts Center reviews papers/presentations

• Individual retailer (Company X: large range of goods)
• Working behind their firewall
• Item-level prices and quantities
• Rich information on attributes that require machine learning to process
• NDA and access agreements with University of Maryland and Michigan.
• No results in today’s presentation, but lessons learned discussed
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Lessons learned on re-engineering prices
• Substantial gains from using superlative price indices (e.g., Tornqvist) rather than 

Laspeyres even without quality adjustment
• Quality change is pervasive

• Need P, Q and Attribute Data
• Attribute data comes in many flavors

• High value added from information aggregators like NPD
• Abbreviated text fields from Kilts Nielsen
• Text and image fields from individual retailers.

• Strikingly, similar patterns emerge from these distinct sources
• Rely on methods from Erickson and Pakes (2011) (EP) that incorporate time varying 

unobservable characteristics
• Machine learning enables using disparate attribute data with methods

• Scalable approaches under development:
• Need to show that indices can be produced on a timely basis at scale.
• API to be used behind company’s firewall or with information aggregators data
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High quality value-added attribute data from 
NPD
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• High pace of product entry and exit
• 5.7% entry, 4.5% exit per qtr

• Rapid quality change 
• Single-serve pod makers 

entered over our sample 
period

• Laspeyres shows more inflation 
than Tornqvist (one advantage of P 
&Q data is ideal indices easy to 
compute).

• Time dummy method yields 
additional adjustment.

• Hedonic Tornqvist, TV lower than 
Time Dummy.

• All price indices are chained, 
quarterly.  
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Substantial improvements —
even in food

• CPI and Laspeyres (Nielsen) 
track  each other 
(reasonably) well.

• Tornqvist substantially lower 
inflation correcting for 
inflation.  

• Quality change in food 
substantial

• ML techniques effective!

Price Indices – Food 



Lessons learned about nominal revenues  

This part of the project at earlier stage.

We find evidence that official statistics (e.g., PCE) and 
transactions data (e.g., from Nielsen):

• Track each other reasonably well at broad group level (e.g., 
food and non-alcoholic beverages) 

• PCE too smooth at high frequency for detailed product 
categories, consistent with extrapolation/interpolation.

• Less cyclicality
• Misses item-specific events (surge in nominal 

expenditures for eggs during bird flu).
• Interestingly CPI picked up but PCE nominal 

expenditures did not
• Coverage issues are a challenge for specific data providers:

• Nielsen high quality on food items.
• Nielsen also covers non-food items sold at Grocery 

Stores.  
• Poorer coverage and becoming less 

representative over time.
• Benchmarking to Economic Census likely still critical.
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Lessons Learned + Next Steps
• Using item-level P and Q transactions data with attributes can be used to produce

• Internally consistent nominal sales
• Price deflators that adjust for quality
• Quality adjustment at scale using machine learning

• Next Steps
• Create new indicators at scale on timely basis.

• Need to demonstrate to statistical agencies this is feasible and yields 
improvements.

• Objective:  Deliver RESET estimates for entire retail goods sector
• Robustly and efficiently scale to new partners

• Information aggregators such as Nielsen and NPD + Private Firms (aiming for 
100 largest + sample of smaller)
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Challenges
• Incentivize private sector firm participation

• New more granular, real time statistics
• Reduce survey burden

• Technology
• APIs  
• Secure multi-party computing
• Stability/consistency of data stream
• Heterogeneity of company information systems

• Legal and Institutional
• Implementing this approach will require changes in statistical agency interaction 

and structure
• Data synchronization essential
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For more information see:

"Re-engineering Key National Economic Indicators." by Gabriel Ehrlich, John Haltiwanger, Ron 
Jarmin, David Johnson, and Matthew D. Shapiro. Paper prepared for NBER/CRIW Conference Big 
Data for 21st Century Economic Statistics (Bethesda, March 2019). Revised July 2020 pdf

"Quality Adjustment at Scale: Hedonic versus Exact Demand-Based Price Indices" by Gabriel 
Ehrlich, John Haltiwanger, Ron Jarmin, David Johnson, Ed Olivares, Luke Pardue, Matthew D. 
Shapiro, and Laura Yi Zhao. August 2021.

"Minding Your Ps and Qs: Going from Micro to Macro in Measuring Prices and Quantities." 
by Gabriel Ehrlich, John Haltiwanger, Ron Jarmin, David Johnson, and Matthew D. Shapiro. AEA 
Papers and Proceedings 109 (2019) 438-443. DOI: 10.1257/pandp.20191004 pdf
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http://www-personal.umich.edu/%7Eshapiro/papers/ReengineeringIndicators-CRIW2019.pdf
https://www.nber.org/books/abra-7
http://www-personal.umich.edu/%7Eshapiro/papers/ReengineeringIndicators-CRIW2019.pdf
http://www-personal.umich.edu/%7Eshapiro/papers/Price_Quantity_Scale.pdf
http://www-personal.umich.edu/%7Eshapiro/papers/ReengineeringIndicators-MindingP&Q.pdf
https://doi.org/10.1257/pandp.20191004
http://www-personal.umich.edu/%7Eshapiro/papers/ReengineeringIndicators-MindingP&Q.pdf
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