Quality Assessment of Big and Complex Data in Pharmaceutical Target and Chemical Safety Assessment

Matt Martin (Computational Toxicology Lead)

Big Data to Smart Data to Fast Data

Preparing for a Changing Regulatory Landscape

ESD Target ID to Early Screen Development

SDS Screening/Designed Synthesis

LD Lead Development

CS Candidate Seeking

GLP Good Laboratory Practice Preclinical Studies

CLINIC Clinical Trials to Post-Market

Target Tissue Specificity in Preclinical Species

- Developing
 comprehensive and
 highly comparable
 preclinical tissue
 maps (cyno, dog,
 rat, mouse)
- TBs of RNAseq data has been generated
- Calculating tissue specificity scores for all genes (e.g., Tau)
- Performing crossspecies comparisons
- Improving
 Cynomolgus
 monkey genome
 annotation via
 resequencing effort

Target Tissue Specificity in Preclinical Species

- Need for automated NGS pipelines consistent across species
- Use data to ensure tissue/cell/species correctness
- Benchmark "quality" based on information gain as opposed to pure statistical indicators
- Need for uniform/automated analyses to interpret (not over-interpret) data

Early Toxicity Study (ETS)

HTS DNA Damage Response (DDR) Assay

- Human lymphoblastoid TK6 cell line using flow cytometry
- Earlier, faster, less compound with improved mechanistic and potency readouts compared to manual In Vitro Micronucleus Assay
- 6 Markers of DNA Damage @ 4 & 24 hrs:
 - Double strand breaks (yH2AX)
 - Mitotic Arrest (Phosphorylated Histone H3)
 - Polyploidy (DNA stain)
 - Apoptosis (Cleaved PARP)
 - DNA damage signaling (nuclear P53)
 - Culture Growth/Cytotoxicity (Cell Counts Relative to Control)
- Potential application to BM & GI toxicity
- Building predictive GeneTox model using assay data

DDR Data Analysis & Model Inputs

Many 1000s of complex DNA damage response data points reduced to maximal efficacy and relative (to cytotoxicity) potency estimates for model development

Robust Concentration Response Analysis

Robust, Systematic, Flexible → 'Modelable', Comparable, Reusable

Ability to "re-fit" concentration-response data (internal and external)

https://github.com/USEPA/CompTox-ToxCast-tcpl

GeneTox Machine Learning Classification Model

- Random Forest model built on 58 well characterized chemicals
- Predicts non-genotoxicity vs genotoxicity
 - And class of genotoxicity (aneugen tubulin inhibitor; aneugen aurora inhibitor; clastogen)
 - >95% Accuracy
- Currently evaluating performance on internal Pfizer compounds

Lessons Learned

- Predictive models with good mechanistic underpinning do not need many chemicals for good predictivity
- Wet- and dry-Lab scientists need to work together closely
- Use of mechanistic assays can't explain mechanism in name only; data should do the talking
- Value is keeping all potency estimates, but making them relative to cytotoxicity

Complex/multi-parametric data generated, rigorously analyzed and distilled down to a single call in < 1 week

ESD SDS LD CS GLP Clinic

Clinical Dose Selection & Mechanistic Differentiation

Lessons Learned

- Reanalyzing in vitro data in uniform manner increases comparability
- Using activity concentration at cutoff (ACC), for example, over AC50 or IC50 values is a less biased comparator

SCIENCE FOR IMPACT

From Big Data to Improved Decision Support

- **BIG DATA:** Generating large-scale tissue RNAseq tissue maps, HTS & whole transcriptomic in vitro profiling
- SMART DATA: Implemented high-throughput and automated system for robust concentration response analysis and safety classification & RNAseq pipeline with tissue specificity scoring
- FAST DATA: Simplified multi-parametric output to single call for rapid decision-making with ability to mechanistically interrogate & capacity to translate to other toxicities (e.g., DILI, CV, Kidney, Bone Marrow, GI)
- QUALITY: Automation and systemization of big/complex data inherently increases quality and utility of the data

Acknowledgements

DSRD

iTox: Anne Ryan, Yvonne Will, Mike Aleo, Marc Roy, Wendy Hu, Drew Burdick Dennis Pelletier, Mark Gosink, Petra Koza-Taylor

GeneTox COE: Maik Schuler, Zhanna Sobol, Randy Spellman, Maria Engel, Krista Dobo

Safety Pharm COE: Steve Jenkinson

Jon Cook, Meg Driscoll, Mathy Nagappan

Medicine Design

Eric Watt, Chris Keefer, Cindy Li, Tristan Maurer

