

The National Academies of Sciences, Engineering and Medicine Water Science and Technology Board

Management of *Legionella* in Water Systems (NASEM, 2020)

Discussion Meeting on Environmental Monitoring December 10, 2020

Committee Members

1. Joan B. Rose, Chair, Michigan State University, Lansing

- 2. Nicholas J. Ashbolt, University of Alberta, Edmonton
- 3. Ruth L. Berkelman, Emory University, Atlanta, GA
- **4. Bruce J. Gutelius**, New York City Department of Health and Mental Hygiene
- 5. Charles N. Haas, Drexel University, Philadelphia, PA
- 6. Mark W. LeChevallier, Dr. Water Consulting LLC, Morrison, CO
- 7. John T. Letson, Memorial Sloan Kettering, Bronxville, NY
- 8. Steven A. Pergam, Fred Hutchinson Cancer Research Center and the University of Washington
- 9. Michèle Prévost, Polytechnique Montréal, Quebec
- **10.Amy Pruden**, Virginia Polytechnic Institute and State University, Blacksburg

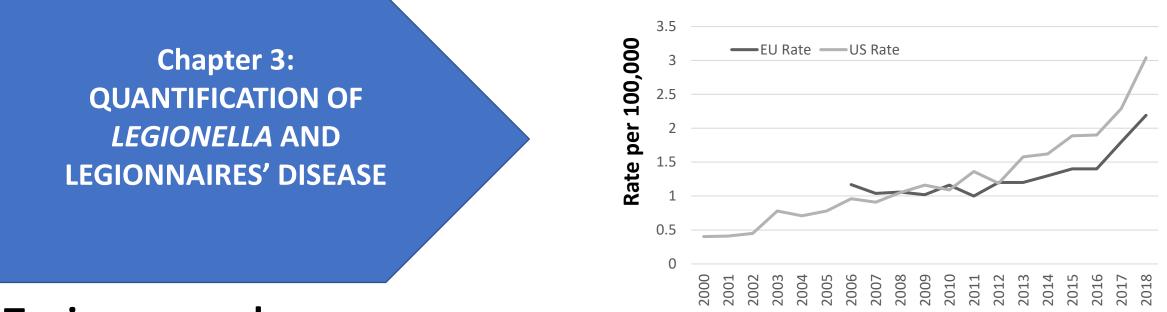
11.Michele S. Swanson, University of Michigan, Ann Arbor

12.Paul W. J. J. van der Wielen, KWR Watercycle Research

Institute, Nieuwegein, The Netherlands

13.Lan Chi Nguyen Weekes, La Cité, Ottawa, ON

Laura Ehlers, Senior Staff Officer, NASEM


The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

Management of Legionella in Water Systems

- Chapter 1 Introduction: Legionnaires' disease and Legionella, water systems as sources for Legionella growth.
- Chapter 2 Diagnosis and Ecology: Human host, Legionella species and strains, ecology in amoebae, exposure pathways, recommended research
- Chapters 3 Quantification of Legionnaires' disease and Legionella in water systems: Committee's estimate of true incidence; thresholds for environmental monitoring; QMRA
- Chapter 4 Prevention and Control Strategies: Temperature control, disinfection, managing hydraulics, nutrient limitation; plumbing materials, actions at the distal portion of plumbing, and aerosol control; many buildings water systems considered
- Chapter 5 Regulations and Guidelines on Legionella Control: Regulations, codes, and guidelines on control, quantification, and prevention of Legionella and Legionnaires' disease

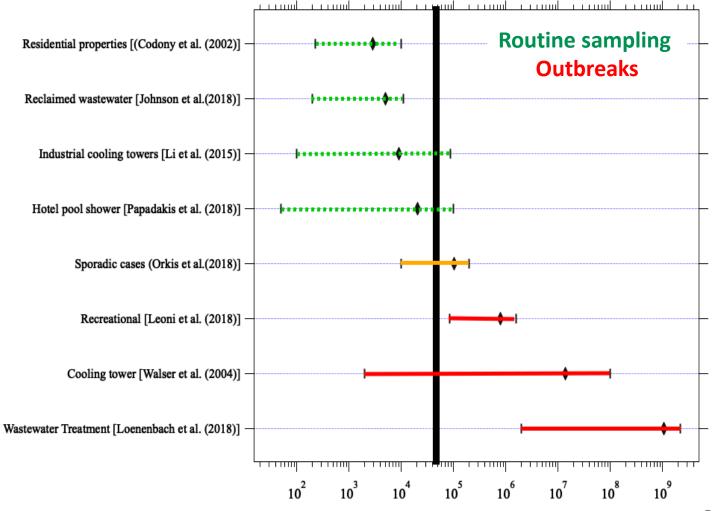

Topics covered:

- Disease surveillance for Legionnaires' disease
- Committee estimates that the number of persons with Legionnaires' disease ranges from **52,000 to 70,000 in the United States each year**
- Environmental monitoring of Legionella
- Compilation of Legionella data from across the world
- Quantitative Microbial Risk Assessment for Legionella pneumophila

Evolving Methods for Quantification of Legionella

Purpose: Diagnosis, Outbreak investigation, Routine monitoring, Mitigation assessment, and Research

- There are now lots of tools
 - Certified standard culture methods vs. new culture methods
 - Quantitative PCR/droplet digital PCR
- Can distinguish between *Legionella* spp., *Lp*, *Lp1*, *L*. *anisa*, etc.
- Many methods are quantifiable
- Pros and cons
 - Culture methods can underestimate because of VBNC cells
 - PCR methods can detect inactivated Legionella



Legionella on Charcoal Yeast Extract Agar

Range of Environmental Concentrations Without and With Observed Disease Outbreaks

A *Legionella* concentration of **50,000 CFU/L** should be considered an "action level", that is, a concentration high enough to warrant serious concern and trigger remediation

A lower level may be necessary for at-risk individuals

6

QMRA Derived Concentrations for Devices/Fixtures Corresponding to Reference Infection Risks and DALYs

Devices/Fixtures	Critical Average <i>Lp</i> Concentration (CFU/L)			
Target Risk Value: 10 ⁻⁴ infections per person per year				
Conventional faucet	104,000			
Conventional toilet	857,000			
Conventional shower	1,410			
Target Risk Value: 10 ⁻⁶ DALY per person per year				
Conventional faucet	1,060			
Conventional toilet	8,830			
Conventional shower	14.4			

L. pneumophila concentrations in various plumbing fixtures that correspond to target risk levels. NOTE: Median estimates from a Monte Carlo simulation. SOURCE: Hamilton et al. (2019). Chapter 5: REGULATIONS AND GUIDELINES ON *LEGIONELLA* CONTROL IN WATER SYSTEMS

• Lack of federal laws and regulations pertinent to *Legionella*

- State and local regulations and other enforceable policies
- Guidance documents
- Regulations and policies from other countries
- Recommendations on monitoring and other steps forward

Chapter 5 Recommendations

- Expand the Centers for Medicare & Medicaid Services memo to require monitoring for Legionella in environmental water samples for all hospitals
- 2. Register and monitor cooling towers
- 3. Require water management plans in all public buildings including hotels, businesses, schools, apartments, government buildings
- Require a temperature of 60°C (140°F) at hot-water heaters and 55°C (131°F) to the distal points (the point of connection to fixtures including thermal mixing values)
- 5. Require a **minimum disinfectant residual** and **monitor** for *Legionella* throughout public water systems

Today's Program

Three purposes of Legionella Monitoring Amy Pruden, 15 min.

- Monitoring to ensure a prevention strategy is working (based on a Legionella water management plan)
- Monitoring for positive sites (presumably after an outbreak)
- Collaborative, widespread national survey of Legionella

Refining the Action Levels/Thresholds *Chuck Haas, Mark LeChevallier, and Paul van der Wielen, moderated by Joan Rose,* 45 min.

- Report identified several thresholds (50,000 CFU/mL; QMRA results)
- Should numbers be based on *L. pneumophila* or *Legionella* species?
- If molecular methods are used, how would the action levels/thresholds be recalculated?
- Can numbers be refined depending on type of building/water device (toilets vs. faucets vs. showers vs. cooling towers), exposure route, or characteristics of building occupants?

Break 20 min.

In Complex Water Systems, Where and When Should Monitoring Occur? How should Chapter 5 Recommendations be Implemented in the Real World?

Buildings and Cooling Towers *Michele Prevost, 20 min.*

Utilities and Distribution Systems Mark LeChevallier, 20 min.

Questions from the Audience 45 min.

Selected International Legionella Regulations

Country/ Province	Buildings/Devices Covered	Preferred Treatment	Monitoring Thresholds (All Converted To CFU/L)
Netherlands	Priority premises (large buildings), swimming and bathing facilities, cooling towers	Temperature control, flushing, UV, filtration	>1,000 CFU/L, take response actions
Germany*	Large buildings, cooling towers, swimming pools, bathing water, WWTPs	None, though temperature control and avoiding stag- nation evident in codes	>1,000 CFU/L, take response actions
England	Evaporative cooling systems, cooling towers, hot and cold water systems, spa/pool systems, healthcare facilities	Temperature control, biocides	100-1000 CFU/L, take response actions
France	Buildings except private residences, cooling towers	None apparent	<1,000 CFU/L target for public facilities <50 or 100 CFU/L target for prevention of nosocomial infections
Australia	Premise plumbing in healthcare and aged care facilities, cooling towers	Temperature control, biocides	> 10 ⁶ CFU/L, take response actions
Canada*	Cooling towers, open water systems, HVAC components, and hot- and cold-water systems in 360 government buildings	None	>10 ⁶ CFU/L, take response actions
Quebec*	Cooling towers only	Biocides	≥10 ⁴ to <10 ⁶ CFU/L, take response actions

*Countries/Provinces that have evidence of lower environmental concentrations since regulations went into effect