

Robotics and Artificial Intelligence: Policy Implications for the Next Decade

International Panel -

Dr. Robin Mishra

Structure

- 1. TV Thriller 4.0
- 2. Research 4.0
- 3. Industry 4.0
- 4. Work 4.0

1. TV Thriller 4.0

"Tatort" - German Crime Series

→ TV Market Share (2015): 25,8 %

Tatort Stuttgart "HAL" on August 28, 2016

Tatort Bremen "Echolot" on October 30, 2016



2. Research 4.0

Center for Robotics & Mechatronics (RMC) at DLR (Oberpfaffenhofen)

- Core Competence RMC:
 - √ interdisciplinary (virtual) design
 - ✓ computer-aided optimization & simulation
 - ✓ implementation of complex mechatronic systems
 & human-machine interfaces
- Robotics community → one of the world leading institutions
- Research areas:
 - Flying Robots,
 - Medical Robotics,
 - Personal robot assistance

Fraunhofer Institute for Factory Operation and Automation IFF (Magdeburg)

- Research areas:
 - Digital Engineering & Industry 4.0
 - Convergent Supply Infrastructures
 - Smart Work Systems
 - Resource efficient production
 - make factories more energy efficient
 - reducing transportation
 - implementing smart energy cascades
 - closed energy & material cycles

Max Planck Institute for Intelligent Systems (Stuttgart, Tübingen)

- future-oriented research on intelligent systems
- 3 scientific departments:
 - Perceiving Systems
 - Autonomous Motion
 - Empirical Inference

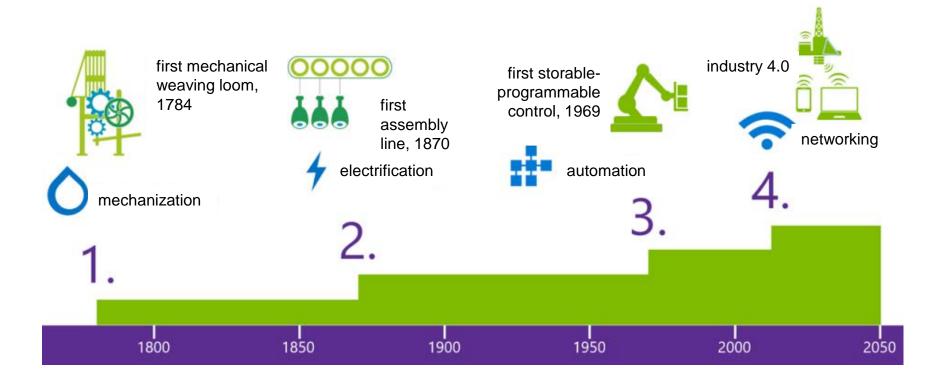
Perceiving Systems

Autonomous Motion

Empirical Inference

German Research Center for Artificial Intelligence (Kaiserslautern, Saarbrücken, Bremen)

- Leading German research institute in field of innovative software technology
- Public-private partnership: among shareholders are BMW, Volkswagen, Deutsche Telekom, Bosch; but also Google, Intel, John Deere
- Variety of projects & applications:
 - Multilingual Technologies, Plan-based Robot Control, Educational Technology Lab, Robotics Innovation Center, Intelligent Analytics for Massive Data, etc.



3. Industry 4.0

Economic potential of Industry 4.0 for Germany

Forecast until 2025:

- up to 430,000 new jobs
 - → simultaneous elimination of 490,000 low-skilled jobs *
- GDP growth of about 30 billion EURO **
- Total investment of about 250 billion EURO **

Source:

^{*} Study: IAB, BIBB, GWS (November 2015)

^{**} BCG-Study: Industry 4.0 (April 2015) from Prof. Neugebauer SFU 2015

Global economic potential of the Internet of Things

	Size in 2025, \$ trillion ¹	
Nine settings where added value is expected	Low estimate	High estimate
Factories – eg., operations management, predictive maintenance		1.2 - 3.7
Cities – eg., public safety and health, traffic control		0.9 - 1.7
Human – eg., monitoring and managing illness, improving wellness		0.2 - 1.6
Retail – eg., self-checkout, smart customer-relationship		0.4 - 1.2
Logistics – eg., logistics routing, autonomous vehicles, navigation		0.6 - 0.9
Work sites – eg., operations management, equipment maintenance		0.2 - 0.9
Vehicles – eg., condition-based maintenance, reduced insurance		0.2 - 0.7
Homes – eg., energy management, safety and security		0.2 - 0.3
Offices – eg., augmented reality for training	ı	0.1 - 0.2
Tot	al ¢ / trillian	¢ 11 trillion

Total \$ 4 trillion - \$ 11 trillion

<u>Source</u>: McKinsey Global Institute analysis, June 2015

¹Adjusted to 2015 dollars, for sized applications only; includes consumer surplus. Numbers do not sum to total, because of rounding

Consequences for German economy

Challenges:

- Export-oriented economy
- Reliance on industries that are challenged by machine learning/AI (e.g. automotive, manufacturing, engineering)
- Data protection laws may slow down machine learning

Opportunities:

- Strong industrial base (GER Industry accounts for 30% of GDP compared to 20% in USA, GB, F)
- Strength in incremental (vs. disruptive) changes
- Structure of SME and family-owned "hidden champions"
- High quality universities and research organizations
- Vocational and educational training system

Consequences for individual companies

Challenges:

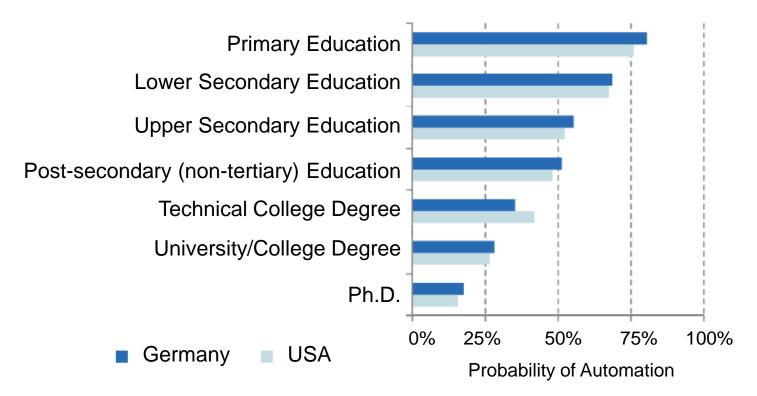
- Platforms and consulting companies may challenge existing B2B business models
- Risk aversion that may lead to slower adaptation of machine learning
- Data sharing beyond corporate boundaries
- Limited size and scalibility

Opportunities:


- Minimize time for development and reduce downtimes
- Predictive maintenance
- Competitive advantage through real data about production processes
- Smart sensors / mixed reality interfaces

4. Work 4.0

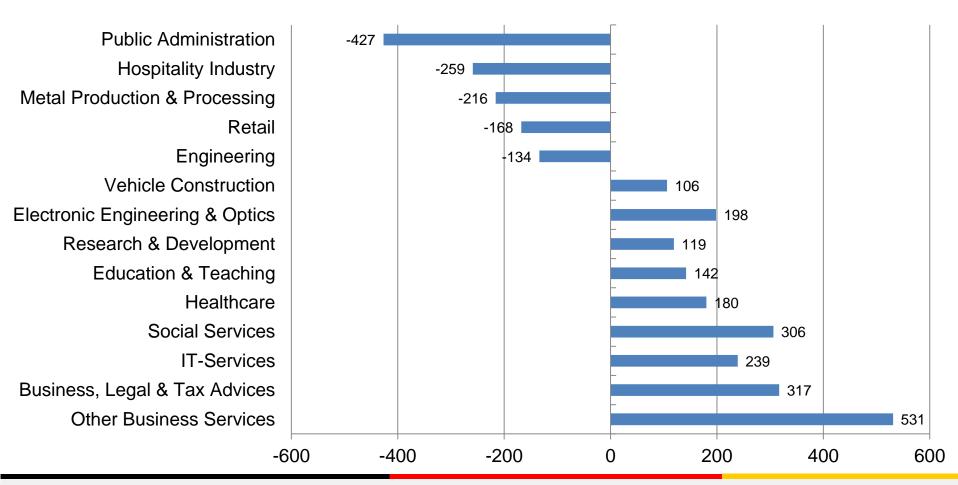
Weißbuch (White Paper) Work 4.0


- published on November 29, 2016
- summarized conclusions of dialogue about "work 4.0"
- documents broader social debate
- stimulus for social design of the future of work

Challenges:

Digital transformation → lead to unemployment (esp. for <u>low skilled workers</u>)

Challenges:


- Digital transformation →lead to unemployment (esp. for low skilled workers)
- Quick devaluation of qualifications
- Demographic Change

Opportunities:

New jobs in services, healthcare, education etc.

Predicted number of employees in selected industries, 2014 – 2030 (in 1000)

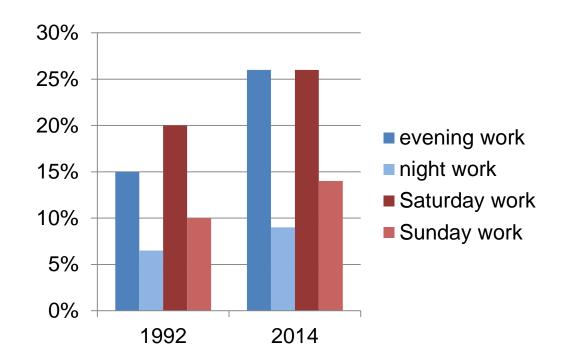
Challenges:

- Digital transformation →lead to unemployment (esp. for low skilled workers)
- Quick devaluation of qualifications
- Demographic Change

Opportunities:

- New jobs in services, healthcare, education etc.
- New quality of learning on the job
- Demographic dividend

Tools:


- Strengthen digital literacy
- Strategy for lifelong qualification & upscilling (turning unemployment insurance into a labor insurance?)
- Incentives & benefits for founders and start-ups

Working Conditions are changing

Challenges:

- Removal of boundaries between work and leisure
- excessive demand on employees

Working Conditions are changing

Challenges:

- Removal of boundaries between work and leisure
- excessive demand on employees

Opportunities:

- getting rid of physically and psychologically demanding work
- sovereignty of working time and working place
- self-determined life planning

Tools:

- collective or company agreements with room for experimental spaces
- working time accounts

Thank you for your attention!

"We're looking for someone with your exact qualifications, but a mechanical version."

For further information: www.germany.info
Follow @GermanyinUSA @MishraRob on Twitter