Challenges in Accelerating the Drug Development Paradigm in Oncology

R. Donald Harvey, PharmD, BCOP, FCCP, FHOPA
Associate Professor, Hematology/Medical Oncology and
Pharmacology

Director, Phase I Clinical Trials Section

Changes in Drug Development

- Two dominant therapeutic directions
 - Targeted (molecularly specified) agents
 - Small molecules, monoclonal antibodies
 - Immunotherapeutics
 - Multiple agents, targets, approaches
- "Seamless" drug development
 - Evolution of the continuous phase I trial

Seamless Drug Development

- Blurring of phases of trials/removal of later phase trials
 - Bendamustine, crizotinib, osimertinib
- Pembrolizumab
 - Phase I initiated 2011
 - Early activity signals led to rapid expansion of cohorts
 - Total phase I population = 1200 patients
 - Led to approval in 2 diseases and a companion diagnostic
- More efficient enrollment, lower total sample size in development

Seamless Drug Development

Design concerns emerge

Questions Regarding the Design of Large First-in-Human Cancer Trials.

- Is there a compelling rationale for including multiple expansion cohorts?
- Is the sample-size range consistent with the stated objectives and end points?
- Is there an appropriate statistical analysis plan for all stated end points?
- Are the eligibility criteria appropriately tailored to the expansion cohorts?
- · Is there a defined end to the trial, in terms of both efficacy and futility?
- Is there a system in place to communicate with all investigators in a timely fashion?
- Does the informed consent reflect the current knowledge of safety and efficacy of the investigational drug and other agents in the same class?
- If the trial may be used for regulatory approval, is there an independent oversight committee?
- If the trial may be used for regulatory approval, has there been communication with regulatory agencies?

Seamless Drug Development – Mind the Gap(s)

Decreased trial population

 Rapid acceleration of dose derivation and adoption for licensing trials

Clinical pharmacology studies

Oral Agents – New Molecular Entities

2006 – 2010	2011	2012	2013	2014
Dasatinib	Abiraterone	Axitinib	Afatinib	Ceritinib
Everolimus	Crizotinib	Bosutinib	Dabrafenib	Idelalisib
Lapatinib	Vandetanib	Cabozantinib	Ibrutinib	Olaparib
Nilotinib	Vemurafenib	Enzalutamide	Pomalidomide	Trametinib
Pazopanib		Regorafenib		
Sunitinib		Vismodegib		

	2015	2016
Alectinib	Panobinostat	Venetoclax
Cobimetinib	Sonidegib	
Ixazomib	Trifluridine/tipiracil	
Lenvatinib		
Osimertinib		
Palbociclib		

Dose Finding

Determination of dose for registration-directed studies

Phase 1 ± Phase 2

Registrationdirected studies

Commercial access

Limited learning about variability of exposure following a fixed dose

Requirements for postmarketing studies in special populations and refined exposure-response analyses

Process of Dose Finding

- Preclinical toxicity data
- Formulation
 - Optimization of dissolution, pH dependence
 - Increasing need for acidic GI environment
- Phase 1 dose derivation
 - Oral more fixed than IV therapies
 - Food effects ignored early or require fasting
 - Aimed at the maximum tolerated dose (MTD) in the first cycle
- MTD often the only dose evaluated in phase 2 and beyond
- Trials define dose for a population, individual dose adjustment is empiric

Limitations to the Current Approach

- Dose-exposure-effect relationships are rarely well defined a priori
- High rates of dose reductions in subsequent trials
- Fails to identify patients who may benefit from lower and higher doses
- Targeted agents the optimal biologic dose
 (OBD) may not = MTD

Limitations to the Current Approach

- Chronic therapy-limiting adverse events may not be incorporated in dose decisions
- Application of MTD to subsequent combinations, populations questionable
- Multiple schedules are rarely explored in a comparative fashion
 - Continuous dosing of oral agents for activity not necessarily needed

Late Toxicities with Targeted Agents

- Drug X is a multi-kinase inhibitor
- FDA approved dose = MTD from single agent phase 1 trial
- In phase 3, 86.4% required at least one dose modification (interruption, reduction, discontinuation)
 - 2 dose reductions allowed (70% and 40% of starting dose)

- PK/PD
 - High fat meal increases AUC by 57%
 - $T_{1/2} = 55 \text{ hours}$
 - Accumulates 5-fold at 21 days
 - Efficacy: No relationship between exposure (AUC) and PFS
 - Safety: Increased exposure = decreased time to first dose modification, increased QTc
- Post-marketing requirement to study lower doses

- Drug Y is another multikinase inhibitor
- Dose 4 tablets daily
- PK
 - Parent $t_{1/2}$ = 14-58 hr, M2 metabolite = 14-32 hr, M5 metabolite = 32-70 hr
 - Different formulation in clinical trials versus marketed one
 - Higher M2 and M5 exposure
 - Undergoes enterohepatic cycling (3 peaks at 4, 8, and 24 hours)
 - Parent and metabolites highly albumin-bound (99.5%)
 - M2 and M5 exposure higher in those > 65 years and in women
 - High fat meal increases parent AUC by 48%

- Dose interruptions in 61%, 38% reduced due to AEs
- Two post-marketing pharmacology commitments
- Three post-marketing trials (CYP probe trial after repeated dosing, QT prolongation study, and renal impairment)
- Intrapatient variability for metabolites = 46% and 64%
- FDA clin pharm review "A population PK analysis has not been completed, therefore covariates contributing to variability are unknown"

Post-Approval Clinical Trial Commitments – Oral Agents

- Often clinical pharmacology studies
- Since 2011
 - 28 new approvals
 - 11 accelerated
 - 78 postmarketing requirement trials
 - 5 dose finding
 - 30 drug-drug interaction
 - CYP and gastric pH effects
 - 19 hepatic impairment, 7 renal impairment
 - 2 food effects

Methods to Improve Dose Precision

- Precision getting the dose right for the majority of populations
- Formulation improvement
- Earlier complete understanding of food effects and concomitant medications
- Application of physiologically based pharmacokinetic models
 - Sparse PK collection in later stage trials
- Approve multiple doses for differing populations, optimally defined by clinical variables

Proposed Phase 2 Dose Model

