


# The Road to Precision Medicine by a Continuous Learning System

Laura Esserman, MD, MBA

Alfred A. de Lorimier Endowed Chair in General Surgery

Professor of Surgery and Radiology, UCSF

**Director UCSF Breast Care Center** 

Clinical Leader of Breast Oncology Program. Helen Diller CCC

PI, I SPY family of Trials, WISDOM Study

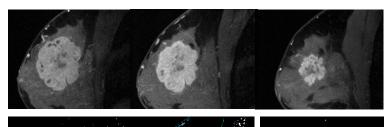
### The Problems With Most Clinical Trials

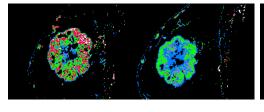
- Most clinical trial design assumes that the disease is the same for all
- Each trial is a "one-off" making knowledge turns slow
  - The process is burdensome and not integrated with care processes
- Most new drugs are tested first in the setting of metastatic disease
  - Where progress is measured in terms of months, rather than cure
- For years, the standard of care was to start with surgery first
- There is little effort to tie progress from treatment to screening and prevention

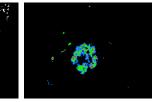








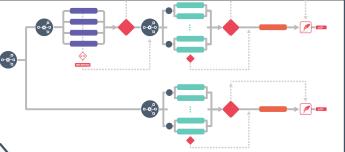





# **Conceptual Framework of I-SPY**

**Goal:** Improve the Way We Evaluate New Treatments

- Accelerate Knowledge turns: drive urgency and innovation
- Design trials that incorporate disease heterogeneity prospectively
- Move drug development into the earlier stage: high risk neoadjuvant setting
- Identify early endpoints captured in the course of care:
  - Amount of tumor left after treatment (none=pCR)
- Look for big signals
- Design trial to continuously learn: adaptive randomization
- Allow seamless evaluation of new drugs: eliminate "stop and start"
- Building evidence using biomarkers and new statistical methods





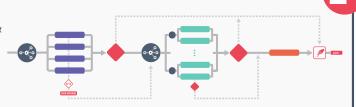



#### Optimize Strategy in a Regulatory Framework

- Randomization to contemporary control at second tx block
- Continue to optimize pCR by subtype
- Integrate PROs in trial and standard of care

GOAL: Minimize toxicity, increase chance of pCR and accelerated approval



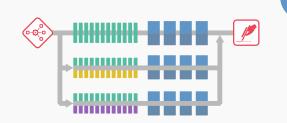

### **ROADMAP**

- Accelerated approval for agents with optimal pCR rates
- Introduce quantitative measures of toxicity
- · Use combined endpoints for efficacy and toxicity
- Equal efficacy with less toxicity is superior

#### Adapt therapy within patients

- RCB, Imaging as a regulatory endpoint for poor & excellent responders ('preRCB')
- Allows early treatment switching and discontinuation depending on interim response to treatment

GOAL: Increase chance of pCR for each individual; reduce unnecessary toxicities

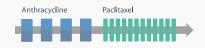



- Optimize pCR for each patient
- Stop at pCR, continue if not
- Confirm DRFS at 3 years >92% for pt with pCR

#### Adapt therapy within trial

- pCR regulatory endpoint (accelerated approval)
- Test multiple novel agents adaptively
- Operational efficiencies, platform trial, culture of innovation

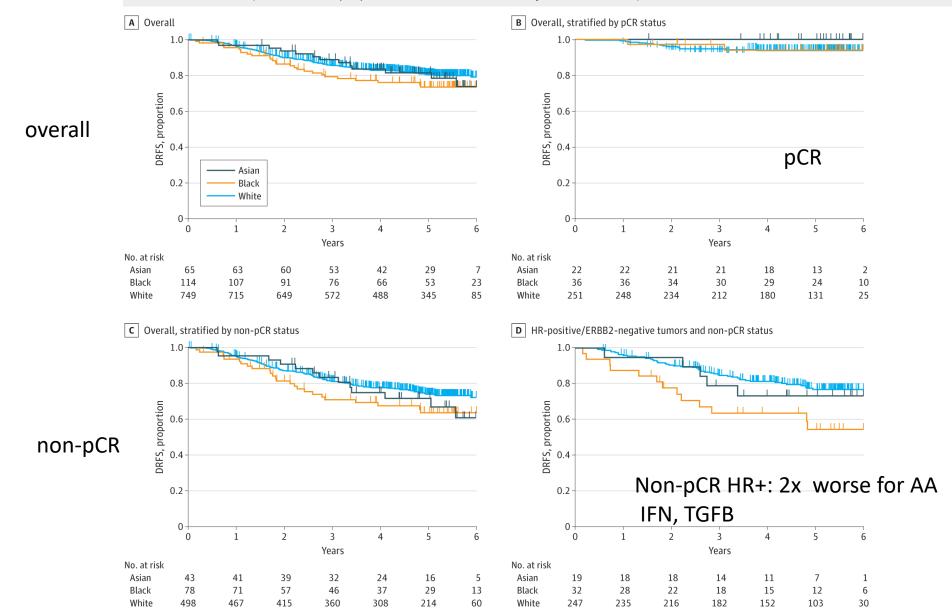
GOAL: Increase pCR in each biomarker signature




- pCR predicts DRFS HR 0.18 regardless of subtype, therapy
- RCB stratifies outcome
- Many agents identified that improve subtype specific pCR
- Molecular markers better classifiers than receptors

#### Measure outcomes by subtype

Standardize imaging, pathology, biomarkers, data collection


GOAL: create collaborative framework & standards



- Absence of tumor after neoadjuvant chemo (pCR) is optimal early endpoint
- for molecularly high risk disease
- Better by subtype

### From: Race, Gene Expression Signatures, and Clinical Outcomes of Patients With High-Risk Early Breast Cancer

JAMA Netw Open. 2023;6(12):e2349646. doi:10.1001/jamanetworkopen.2023.49646





#### Figure Legend:

Kaplan-Meier Curves of Distant Recurrence-Free Survival (DRFS) Differences by Race and Pathologic Complete Response (pCR) StatusA, Hazard ratios 1.06 (95% CI, 0.60-1.88; P = .84) and 1.37 (95% CI, 0.90-2.06; P = .14) for Asian and Black patients relative to White patients. B, Hazard ratios 0.00 and 0.93 (95% CI, 0.21-4.07; P = .92) for Asian and Black patients relative to White patients. C. Hazard ratios 1.23 (95% CI, 0.69-2.18; P = .48) and 1.45 (95% CI, 0.95-2.24; P = .09) for Asian and Black patients relative to White patients. D, Hazard ratios 1.26 (95% CI, 0.50-3.17; P = .62) and 2.28 (95% CI, 1.24-4.21; P = .01) for Asian and Black patients relative to White patients. HR indicates hormone receptor.

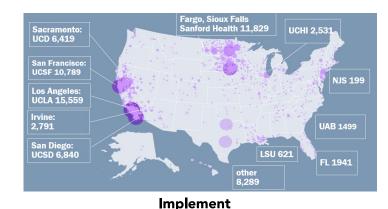
# **Evolution of Trial Design**

- Identify the right ways to stratify the disease population
- Adapt on agents that work
- Develop biomarkers of response
- Move toward serial treatments by testing SMART strategies
  - Block A Block B Block C
  - Standardize the ways to measure treatment success, failure
  - Mitigates the risk of a less than optimal response on "first line"
  - Reimagine how we propose pCR for drug approval in the setting of serial strategies
- Trials should look more like care

# Are these Approaches



### TRIAL STATUS


- ISPY 2.2
  - We are setting a new standard
  - New strategies are going to evolve that will change breast cancer treatment- our trial design allows this
  - EOP (endocrine optimization pilot): we need to settle on a response adaptive endpoint and grow
- RECAST DCIS
  - Response adaptive, but not segmented as much yet
  - Biomarker rich
- ARDS (I SPY COVID→SPARC→ISPY ARDS)
  - Selected real time biomarkers
  - First network to implement in real time
  - Planning testing of response predictive markers
- Pre I SPY: Phase 1 pipeline → I SPY 2.2
  - Shorten the timeline
  - value

### **I SPY Efficiencies**

- Academic Consortium partnered with Quantum Leap HealthCare Collaborative (Not for Profit organization)
- Central IRB- approval 20-25 days
- Collaboration with FDA- 30 day notification
- Efficiencies for real time data capture, advancing evidence generation
  - OneSource
- Collaborative engagement of 14 working groups, including Safety
  - Real time management of Aes and AESIs
- Advocate involvement
  - Especially will be powerful in the BRCA space
- Network of 40+ sites with diverse population enrollment
  - 40+ patients enrolled each month

## WISDOM: Women Informed to Screen Depending on Measures of Risk

- Because if One Size Does Not Fit All . . . For treatment
  - Screening everyone as if it does will not work well
- Personalized Screening vs. Annual Screening:
  - 45,000 women enrolled 2016-2023
  - Open to any women without Breast Ca in the US
- Personalized Screening: Who is at Risk for Fast vs Slow Growing Ca
  - Target prevention based on tumor type
  - Target Screening- when to start, how often, and with what modality
  - Just starting: Fall 2023- . . .



risk model and screening recommendations

Optimize benefit of recommendations associated with new risk models



Refine risk models using internal/external datasets

Collect data in course of screening Validate risk model recommendations

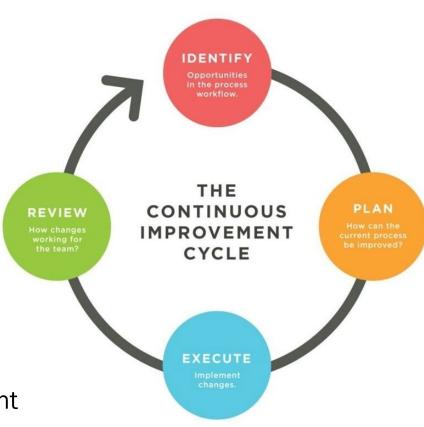


# Improvements in Racial and Ethnic Diversity

- Significant improvement in representation since 2020
- 1.7% Black/African American participants through 2019; in Q4 2022, WISDOM included over 16% Black/AA participants

Overall study numbers show gradual improvement each quarter and year

| Year/Timeframe | White alone,<br>non-Hispanic or<br>Latino | Black or African<br>American alone<br>non-Hispanic or<br>Latino | American Indian<br>and Alaskan Native<br>alone<br>non-Hispanic or<br>Latino | Asian alone,<br>non-Hispanic or<br>Latino | Native Hawaiian<br>and Other<br>Pacific Islander<br>alone,<br>non-Hispanic or<br>Latino | Two or More<br>Race,<br>non-Hispanic or | Hispanic or<br>Latino | Unknown, Prefer not to answer, some other race not listed | Total N |
|----------------|-------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------------------------|---------|
| Start-2019     | 81.4%                                     | 1.7%                                                            | 0.2%                                                                        | 4.5%                                      | 0.2%                                                                                    | 2.9%                                    | 7.9%                  | 1.3%                                                      | 21,399  |
| 2020           | 74.2%                                     | 4.2%                                                            | 0.3%                                                                        | 6.0%                                      | 0.1%                                                                                    | 3.4%                                    | 10.5%                 | 1.3%                                                      | 7,725   |
| 2021           | 73.4%                                     | 8.1%                                                            | 0.3%                                                                        | 4.0%                                      | 0.1%                                                                                    | 0.3%                                    | 10.1%                 | 0.8%                                                      | 10,053  |
| 2022           | 67.1%                                     | 11.9%                                                           | 0.5%                                                                        | 4.6%                                      | 0.1%                                                                                    | 3.7%                                    | 11.5%                 | 0.8%                                                      | 10,108  |
| Q1 2023        | 57.9%                                     | 18.1%                                                           | 0.1%                                                                        | 5.6%                                      | 0.7%                                                                                    | 3.8%                                    | 12.2%                 | 1.6%                                                      | 1,076   |
| All Time       | 75.3%                                     | 5.7%                                                            | 0.3%                                                                        | 4.7%                                      | 0.2%                                                                                    | 3.2%                                    | 9.5%                  | 1.1%                                                      | 50,300  |
| US Population  | 60.1%                                     | 13.4%                                                           | 1.3%                                                                        | 5.9%                                      | 0.2%                                                                                    | 2.8%                                    | 18.5%                 | n/a                                                       |         |


# **Bridging the Research-Care Divide**

- Research and care are largely separate
- The vast majority of data from clinical care is wasted
- Knowledge transfer is slow and difficult
- Prevention, screening, and treatment are not integrated

#### The Continuously Learning Healthcare System Model:

- Learn from each patient's care
- Avoids duplication of effort
- Cycle of continuous improvement, Accelerates knowledge turns
- Connect risk assessment to prevention, screening, and treatment





### **Lessons Learned**

- No disease is monolithic
- The more you understand the biology, the better you can personalize treatment
  - This must be built into the prospective course of care and trials
- The road is long
- Enrollment diversity is crucial and will not happen by itself
  - Must be intentional and requires effort and change
- Improving the way data is collected in care will increase the ability to conduct trials and learn from real world data